
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Power-aware Provisioning of

Virtual Machines for

Real-time Cloud Services

Kyong Hoon Kim1,∗,†, Anton Beloglazov2 ,
and Rajkumar Buyya2

1 Department of Informatics, Gyeongsang National University
Gajwadong 900, Jinju, South Korea
2 Cloud Computing and Distributed Systems (CLOUDS) Lab, Department of Computer
Science and Software Engineering, The University of Melbourne, Carlton 3053, Victoria 3010,
Australia

SUMMARY

Reducing power consumption has been an essential technique for Cloud resources
and data centers not only to decrease operating costs, but also to improve the
system reliability. As Cloud computing becomes emergent for Anything as a Service
(XaaS) paradigm, modern real-time Cloud services are also available throughout Cloud
computing. In this work, we investigate power-aware provisioning of virtual machines
for real-time services. Our approach is (i) to model a real-time service as a real-time
virtual machine request; and (ii) to provision virtual machines in Cloud data centers
using Dynamic Voltage Frequency Scaling (DVFS) schemes. We propose several schemes
to reduce power consumption by hard real-time services, and suggest power-aware
profitable provisioning of soft real-time services.

key words: Cloud Computing, Real-time services, Energy-Efficient Computing, Green Data Centers

1. Introduction

The development in computer and communication technologies has led to a new computing
paradigm called Cloud computing, which delivers computing services to users as utilities in a
pay-as-you-go manner [1]. Cloud providers offer various types of services, such as Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Service
providers make use of IaaS and PaaS to deploy their services without concerns about managing

∗Correspondence to: Department of Informatics, Gyeongsang National University, Gajwadong 900, Jinju, South
Korea
†E-mail: khkim@gnu.ac.kr

Received 1 March 2010
Copyright c© 2010 John Wiley & Sons, Ltd. Revised 19 September 2002

2 K. H. KIM

physical resources. Under the Cloud computing model, users can access on-demand and pay-
per-use services anywhere in the world.

One of big challenges in data centers is to manage system resources in a power-efficient way.
Data centers consume from 10 to 100 times more energy per square foot than typical office
buildings [21]. They can even consume as much electricity as a city [17]. The main part of
power consumption in data centers comes from computation processing, disk storage, network,
and cooling systems. Lowering the energy usage of data centers becomes a challenging issue
because computing applications and data are growing so quickly that increasingly larger servers
and disks are needed to process them fast enough within the required time period [2]. Thus,
data center resources need to be managed in an energy-efficient manner to drive Green Cloud
computing [2]. In this paper, we study energy-efficient management of computing resources via
the Virtual Machine (VM) provisioning, which is an essential architectural element in Cloud
computing environments.

The pay-as-you-go mechanism in Cloud computing assures Service Level Agreements (SLAs)
between customers and Cloud providers. SLAs specify the negotiated agreements on the
Quality of Service (QoS), such as deadline constraints. Thus, data centers must minimize
power consumption without violating the SLAs. As many applications require deadline
constraints, this paper focuses on power-aware management of real-time Cloud services, such
as financial analysis, distributed image processing, real-time distributed databases, etc. The
main contributions of this paper are (i) to provide a real-time Cloud service framework for
requesting a virtual platform; (ii) to investigate various power-aware VM provisioning schemes
based on Dynamic Voltage Frequency Scaling (DVFS) for hard real-time services; and (iii) to
propose and analyze power-aware profitable VM provisioning of soft real-time services.

The remainder of this paper is organized as follows. Section 2 presents related work on
power-aware Cloud computing. We propose the real-time Cloud service framework in Section
3. Section 4 describes the problem definition of hard real-time VM provisioning and provides
several DVFS schemes. In Section 4, profitable VM provisioning of soft real-time services is
analyzed based on DVFS schemes. We evaluate the proposed schemes throughout simulations
in Section 6, and conclude the paper with a summary.

2. Related Work

Many of recent research works have focused on reducing power consumption in cluster
systems. In [3, 29], high performance clusters with the consideration of power consumption
have been designed and developed. As many recent commodity processors provide the DVFS
ability, power-aware cluster systems have been built using such processors [12, 13]. Scientific
applications developed based on the MPI library are mostly targeted at the reduction of
power consumption [14, 12, 23]. Based on the profile of MPI programs, the authors choose an
appropriate voltage scaling for each synchronization point.

General purpose cluster systems also have been studied on the reduction of power
consumption. Srikantaiah et al. [24] have dealt with online services executing in heterogeneous
clusters. When a new request comes, a heuristic for multidimensional bin packing is used to
find a server to allocate the request. If a server cannot be found, a new machine is switched on

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 3

and all the requests are re-allocated. Chase et al. [9] have aimed at serving web-applications in
homogeneous clusters according to a utility function. Gandhi et al. [11] have investigated the
problem of minimizing the mean response time of web-applications on heterogeneous clusters.
In this work the optimal energy allocation is determined based on a queuing theoretical model.

The recently emerged Cloud computing paradigm leverages virtualization of computing
resources and allows the achievement of more efficient allocation of the workload in terms of
higher resource utilization and decreased power consumption. Kusic et al. [16] have investigated
the problem of minimizing both power consumption and SLA violations for online services
in virtualized data centers using a limited look-ahead control. Verma et al. [26, 25] have
proposed the pMapper architecture to solve the same problem considering the migration cost.
Cardosa et al. [8] have presented several techniques for addressing the sharing-aware VM
allocation problem. Hypervisor distributes resources among VMs according to a sharing-based
mechanism, when the minimum and maximum amount of resources that can be allocated to
a VM are specified.

In addition, many studies have focused on power-aware real-time applications in clusters.
Rusu et al. [20] have developed a QoS-aware power management scheme by combining
cluster-wide (On/ Off) and local (DVFS) power management techniques in the context
of heterogeneous clusters. The front-end manager decides which servers should be turned
on or off for a given system load, while the local manager reduces power consumption
using DVFS. Wang et al. [28] have proposed a threshold-based method for efficient power
management of heterogeneous soft real-time clusters as well as the offline mathematical analysis
for determining the threshold. In addition, Kim et al. [15] have investigated power-aware
algorithms for scheduling of real-time bag-of-tasks applications with deadline constraints in
homogeneous clusters.

Considerable amount of work have been done in the area of power-efficient computing, but
few of them deal with power-aware scheduling of real-time applications in Cloud computing
environments. Buyya et al. [2] have presented their vision, challenges, and architectural
elements for energy-efficient management of Cloud computing environments with consideration
of QoS expectations. Kim et al. [31] have proposed a framework for provisioning of Cloud
resources for hard real-time services. In this paper, we extend our earlier work [31] in order to
support general real-time services, including soft real-time model. Thus, this work investigates
the problem of provisioning Cloud resources for both hard and soft real-time services in order
to minimize power consumption.

3. Framework

3.1. Real-time Service Model

A usual real-time service such as financial analysis, distributed database, or image processing,
consists of multiple real-time applications or subtasks. As long as a group of applications for a
given real-time service meet all their deadlines, the service accomplishes the QoS agreed with
users. A real-time service is defined by {τi(ri, ci, di, pi, fi)|i = 1, . . . , n}, where n is the number
of subtasks. Each real-time subtask τi is defined by the following parameters.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

4 K. H. KIM

• ri: release time
• ci: worst-case execution time
• di: relative deadline
• pi: period
• fi: finish time

A real-time subtask τi can be started at time ri and requires the worst-case execution time
ci. In order to accomplish the application’s objective, it should be completed by the time ri+di

after being released. Also, pi specifies its periodicity so that the application releases a subtask of
ci computation time at the time (ri+kpi), and should be finished by ri+kpi+di (k = 0, 1, . . .).
In case of non-periodic application, pi is set to zero. We also consider the duration or finish
time, fi, since a user cannot have access to a Cloud computing resource forever, although a
periodic real-time task in an embedded system assumes an infinite sequence.

A group of sub-tasks of a real-time service is developed and launched on a specific run-
time platform including middleware, operating system, etc. A Cloud computing environment
is a suitable solution for real-time services, as it leverages virtualization. When users request
execution of their real-time services in a Cloud computing environment, appropriate VMs are
provisioned for those services.

3.2. Real-Time Virtual Machine Model

According to the deadline model, real-time services can be categorized into two types: hard
and soft. In the hard deadline model, a service receives some penalty if it does not meet the
deadline. On the other hand, a service with a soft deadline provides a diminished value or utility
even if the execution time exceeds the deadline. A penalty function, such as linear decreasing
function, is used in the soft deadline model. Thus, we propose two different real-time VM
models for Cloud computing.

3.2.1. Hard Real-Time Virtual Machine Model

In this subsection, we define HRT-VM (Hard Real-Time Virtual Machine) as a requirement for
a VM providing a hard real-time service. HRT-VM Vi for a hard real-time service is described
by three parameters: ui, mi, and di.

• ui : the CPU utilization required for the real-time application
• mi : the number of Million Instructions Per Second (MIPS) required for the base VM
• di : the lifetime or deadline

The service is developed and launched on a specific platform or infrastructure (e.g. 1GHz-
Linux machine). We select the MIPS rate, mi, for the specification of the base VM. For a
given set of real-time applications, we can analyze the required CPU utilization ui on the base
VM. Thus, the above requirement implies that the real-time service is guaranteed when the
allocated VM keeps providing ui×mi of the processing capacity by the deadline di. This real-
time service on a virtualized Cloud resource is achieved by compositional real-time computing
and real-time VM techniques.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 5

�����
���������	
�����
 ������� �����
� ����
���

�����
���������	
�����
 ������ �����
� ����
���

�����
���������	
�����
 ������ �����
� ����
���

Figure 1. Various soft real-time service models�����
���� !"�#$ %&'()*+*,- .*/0123456789:;<=> ?@ABCDE FGHI JK L MNOPQR STU VWXYZ[\

]^_ `ab^cde fgbhdijb klm nopqrso qtuvo wvxsyrzx
Figure 2. Quality of soft real-time service

3.2.2. Soft Real-Time Virtual Machine Model

The requirement for a VM providing a soft real-time service needs an additional parameter,
called the penalty function. The penalty function indicates the diminished value of a service by
executing a VM that has missed the deadline. Figure 1 shows examples of soft real-time service
models with various penalty functions. If a real-time service meets its deadline, it provides the
pre-determined value. However, when it misses the deadline, the value or utility of the service
decreases according to its penalty function.

We define SRT-VM (Soft Real-Time Virtual Machine) as the soft real-time VM model.
SRT-VM Vi for a soft real-time service is defined by (ui, mi, di, ϕi), where ϕi describes the
penalty function of soft real-time service model. If the VM Vi is provided with ui × mi of
the processing capacity by the deadline di, the service quality is guaranteed. However, the
processing capacity of ui ×mi is provided beyond the deadline, the service quality is defined
by the penalty function ϕi. Let us assume that Vi is provided with the capacity past delay
time units. Then, as shown in Figure 2, the service quality or value is given by Equation (1).

value =

{

1 if delay ≤ 0
ϕi(delay) if delay > 0.

(1)

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

6 K. H. KIM

{|{| {|{| }~{| }~{|
���� ��� ��� ��� ������� ��� ��� ��� ������� ��� ��� ��� ��� ����������� ��������� ��� ���{|�����������

 ¡¢£¤¥¦¡ §¥£¨¡¥
©¢¡¥

ª«¬«¦¡­¬¡¥
® °̄ ®±° ®²°®³°® °́

µ¶·��¸¹º �¹¸¶��»�
Figure 3. Framework

3.2.3. Real-Time Virtual Machine Request

Cloud resource brokers take the role of finding Cloud resources or VMs for real-time services
requested by users. Thus, a user requests VMs by either HRT-VM or SRT-VM depending on
deadline types, as described above. We denote a real-time VM request as RT-VM regardless
of the deadline type.

The compositional or hierarchical real-time framework [10, 22] enables a group of real-
time applications to be a single real-time resource requirement to the upper layer of a real-
time environment. Thus, we assume that the RT-VM Vi is defined by multiple real-time
applications, {τk(rk, wk, dk, pk, fk)|k = 1, . . . , n}, of the service by using the compositional
real-time technique. Thus, the VM provisioner in a Cloud maps VMs for the service rather
than individual applications. Furthermore, recent work on implementing real-time VMs [27, 30]
assures real-time services (e.g. real-time CPU allocation, real-time I/O) of a VM. This paper
focuses on how to provision VMs to a given RT-VM request with consideration of power
consumption by leveraging the described techniques.

3.3. Real-time Cloud Service Framework

In this subsection, we describe the real-time Cloud service framework based on the real-time
VM model. As shown in Figure 3, the steps for a real-time service are as follows.

(1) Requesting a virtual platform: A user who wants to launch a real-time service submits
all the information about real-time applications to the broker.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 7

(2) Generating a RT-VM from real-time applications: The resource broker first analyzes the
submitted real-time applications and generates one RT-VM request, Vi = (ui, mi, di).

(3) Requesting a real-time VM: The broker requests a VM for RT-VM Vi from the VM
provisioner of a Cloud computing environment.

(4) Mapping physical processors: The VM provisioner finds appropriate processing elements
that meet the Vi requirements and provides the VM to the user.

(5) Executing the real-time applications: The user launches and executes the real-time
applications using the provided VM.

3.4. Energy model

The main part of power consumption in data centers comes from computation processing,
disk storage, network, and cooling systems. This paper focuses on reduction of CPU power
consumption using energy-aware VM provisioning in Cloud computing environments.

The most of power consumption in CMOS circuits is composed of dynamic and static power.
We only consider the dynamic power consumption, as it is the dominating factor in the total
power consumption [18]. Data centers can increase their profit by reducing the dynamic power
consumption. The dynamic power consumption by an application is proportional to V 2

dd and
f , where Vdd is the supply voltage and f is the frequency [6]. Since the frequency is usually in
proportion to the supply voltage, the dynamic power consumption of a processor is defined in
Equation (2).

P = C · f3, (2)

where C is a proportional coefficient. Let us consider an application with the execution
time t running at the CPU with the frequency fmax. If the processor runs at the frequency
level f (0 < f ≤ fmax), the execution time is defined by t/ f

fmax
. Thus, the dynamic power

consumption during the task execution is defined by Equation (3).

E =

∫ t/ f
fmax

0

P = C · t · fmax · f
2

= α · t · S2

(3)

where α is a coefficient and S is the relative processor speed for the frequency f (S =
f/fmax). The DVFS scheme reduces the dynamic power consumption by decreasing the
supplying voltage and frequency, which results in a slowdown of the CPU and increased
execution time. We assume that each PE (Processing Element) p in a datacenter can adjust
its processor frequency from fmin

p to fmax
p continuously. The relative processor speed S for

each frequency f is defined by f/fmax, where fmin
p /fmax

p < S ≤ 1.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

8 K. H. KIM

¼½¾¾¿ÀÁÂ ÃÀÄÅ
ÆÇÈÉÊ ËÌËÍÎÏ Ð ÑÒÓÔÕÖÕ×ÕØ ÕØ ÕØÕ×ÙÚÛÜ¼½¾¾Ý½½¾¼¾¾¾Ý¼¾¾ Þ ßàáâ

(a) Maximum Speed

Ý¼¾¾Ý¾¾¾ã¾¾¼½¾¾ÙÚÛÜ
äÞ åÁäÁ ßàáâ

ÆÇÈÉÊ ËÌËÍÎÏ Ð ÓÒæçÐ èé ê éÒë ê éÒëì ë ê éÒÔí ê éÒÔíì ë ê éÒíë ê éÒíëÕÖ Õ× ÕØ
(b) DVS

Figure 4. Proportional sharing of VM provisioning and power consumption (α = 1)

4. Power-aware Hard Real-Time Cloud Service

4.1. Problem Description

Let us consider a physical machine with one PE of 2400 MIPS and a set of HRT-VMs,
{V1(0.2, 1000, 10), V2(0.8, 500, 15), V3(0.5, 1200, 20)}, as an example. V1 requires the utilization
20% on 1000-MIPS machine by the deadline 10 sec. Similarly, V2 and V3 require 80% and 50%
of 500-MIPS and 1200-MIPS machines by 15 and 20 seconds respectively. Figure 4(a) shows the
proportional sharing scheduling result of these VMs under the maximum processor capacity.
The proportional share of Vi is defined by mi×ui/

∑

3

j=1
(mj×uj). Three HRT-VMs share the

processor capacity in proportion to their required MIPS rates, mi × ui, and finish before the
deadlines. The total power consumption is 8.34 (= 1× 8.34× 1.02) according to Equation (3)
under the assumption of α = 1.

The power consumption can be reduced by combining DVFS and the proportional sharing
scheduling. As shown in Figure 4(b), the minimum required processor capacity is allocated to
each VM, so that the processor dynamically adjust its speed to

∑

(mj × uj)/2400. The total
power consumption of the DVFS scheme is 3.69 (= 10 ×0.52 +5×0.422+5×0.252). Thus, the
DVFS scheme can significantly reduce power consumption compared to the maximum-speed
static scheme.

However, there are tradeoffs in the dynamic scaling of the processor speed in on-line real-
time Cloud computing. Operation at higher processor speed allows the acceptance of more
HRT-VMs with higher power consumption. On the contrary, scaling down to a lower processor
speed results in less consumed power with lower acceptance. For example, let us assume that
a new HRT-VM V4 (0.8, 2000, 10) is requested at the time 10. Figure 4(a) accepts V4 since the
processor is idle at the time 10, while the DVFS scheme shown in Figure 4(b) cannot provision
it due to lack of the processor capacity.

Data centers can increase their profit by provisioning more VMs to users. However, reducing
power consumption increases the profit by reducing the operating cost. To address this trade-

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 9

Table I. Remaining service times of Figure 4(a)

t = 0 t = 5 t = 7.09 t = 8.34

wi
Qi STi wi

Qi STi wi
Qi STi wi[0, 5] [0, 5] [5, 7.09] [5, 7.09] [7.09, 8.34] [7.09, 8.34]

V1 2000 400 2000 0 - - - - - -
V2 6000 800 4000 2000 960 2000 0 - - -
V3 12000 1200 6000 6000 1440 3010 2990 2400 2990 0

off, we propose several schemes for power-aware provisioning of real-time VMs for the purpose
of maximizing profits in Cloud data centers.

We use the proportional sharing scheduling to schedule multiple VMs on a processor. The
proportional sharing scheduling is simple but guarantees the real-time services of HRT-VMs
if the total required MIPS rate is less than or equal to the processor capacity. Furthermore,
it can be easily implemented. For example, the default scheduling in Xen Hypervisor [19] is
Credit scheduler which is based on credit value set by weight of each VM. The VMM (Virtual
Machine Monitor) can dynamically adjust credit values of VMs according to their required
MIPS rates in order to support the proportional sharing scheme.

Before explaining the VM provisioning, we define the remaining service time, wi, of Vi. The
initial value of wi is defined by ui ×mi × (di − ts), at its submission time ts. If Vi is provided
with qi MIPS rate for the period tp, wi is decreased by qi × tp. For instance, Table I shows
the remaining service times of the three described HRT-VMs at the time of proportional share
change shown in Figure 4(a). Vi finishes its service when wi becomes zero.

4.2. DVFS-enabled HRT-VM Provisioning

When a data center receives a HRT-VM request from a resource broker, it returns the price
of providing the HRT-VM service if it can provide real-time VMs for that request. The broker
selects the minimum priced VM among available data centers. Thus, the provisioning policy
in this paper is to select the processing element with the minimum price for the sake of users.
Figure 5 shows the pseudo-code of the algorithm for provisioning a VM for a given HRT-VM
request.

For a given HRT-VM Vi(ui, mi, di), the data center checks the schedulability of Vi on the
processing element PEk of Qk MIPS rate. Suppose that the current running HRT-VMs on
the processing element PEk at time t is known as Tk = {Vj(uj, mj , dj)|j = 1, · · · , nk}. And
the remaining service time of Vj at the time t is denoted as wj . Then, the schedulability is
guaranteed if it satisfies Equation (4). Since wj/(dj − t) is the minimum MIPS rate for Vj by
its deadline dj , Equation (4) means that the total summation of all the required MIPS rates
including the new HRT-VM Vi is less than the processor capacity Qk.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

10 K. H. KIM

Algorithm Min-Price HRT-VM Provisioning (Vi)
1: VM ← null;
2: alloc← −1;
3: emin ← MAX VALUE;
4: pricemin ← MAX VALUE;
5: for k from 1 to N do

6: if (ui ×mi +
∑nk

j=1

wj

dj−t ≤ Qk) then

7: ek ← energy estimate (PEk, Vi);
8: pricek ← price for the HRT-VM Vi in PEk;
9: if pricek < pricemin or

10: (pricek =pricemin and ek <emin) then

11: pricemin ← pricek;
12: emin ← ek;
13: alloc← k;
14: endif

15: endif

16: endfor

17: if alloc 6= −1 then

18: VM ← create VM (PEalloc, Vi);
19: endif

20: return VM;

Figure 5. Min-price HRT-VM provisioning

ui ×mi +

nk
∑

j=1

wj

dj − t
≤ Qk (4)

If PEk is able to schedule Vi, it estimates the energy and price of provisioning (line 7,
8). Since the provisioning policy is to provide lower price to users, the algorithm finds the
minimum priced processor. For the same price, less energy is preferable because it produces
higher profit (line 9-14). Finally, a VM is mapped on PEalloc if HRT-VM Vi is schedulable in
the data center.

When a user launches the service on the VM, the resource provider provisions the VM using
DVFS schemes to reduce power consumption. We propose three power-aware VM provisioning
schemes: Lowest-DVFS, δ-Advanced-DVFS, and Adaptive-DVFS. The following subsections
describe them.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 11

4.2.1. Lowest-DVFS for VM Provisioning

This scheme adjusts the processor speed to the lowest level at which HRT-VMs meet their
deadlines. That is, each HRT-VM Vi executes its service at the required MIPS rate, as shown
in Figure 4(b). It consumes the lowest energy in the case when the HRT-VM arrival rate is
low enough to accept all the requests.

4.2.2. δ-Advanced-DVFS for VM Provisioning

In order to overcome the low service acceptance rate of Lowest-DVFS scheme, this scheme
over-scales more up to δ% of the required MIPS rate for current HRT-VMs. Thus, it operates
the processor speed δ% faster in order to increase the possibility of accepting incoming HRT-
VM requests. The processor scale s is adjusted as in Equation (5) at the time t for a given
HRT-VM set Tk. The proportional share of each VM is in proportion to wi/(di − t).

s = min

{

1, (1 +
δ

100
)×

1

Qk

∑

V i∈Tk

wi

di − t

}

(5)

The value of δ% is predefined in the system according to the system load. Throughout the
simulation results in Section 5, we analyze the impact of δ.

4.2.3. Adaptive-DVFS for VM Provisioning

When the HRT-VM arrival rate and their service times are known in advance, we can analyze
the optimal scale. Let us consider the M/M/1 queuing model with arrival rate λ and service
rate µ. If the processor speed scale is set to s, then the average response time, RT , is given
by RT = 1/(sµ− λ), according to the M/M/1 queuing model. In addition, the response time
should be less than or equal to the average deadline, d, in order to to meet their real-time
service requirements (1/(sµ − λ) ≤ d). Thus, the optimal scale, s∗, to reduce the power
consumption is given by Equation (6).

s∗ =
1

µ

(

λ +
1

d

)

(6)

Adaptive-DVFS scheme manages the average arrival rate λ̂, the average service rate µ̂, and
the average deadline d̂ for the last h service requests (e.g. h = 10). It adjusts the processor
scale s as in Equation (7) at time t for a given HRT-VM set Tk.

s = max

{

min

{

1,
1

µ̂
(λ̂ +

1

d̂
)

}

,
1

Qk

∑

V i∈Tk

wi

di − t

}

(7)

In Equation (7), the optimal scale is calculated by Equation (6) not greater than one. Since
it should be greater than the minimum required utilization of the current HRT-VMs on the
processor, we select the maximum between the two values. The processor speed is adjusted
according to Equation (7) when a new HRT-VM is provided or an existing one finishes its
execution.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

12 K. H. KIM

îïðñòóïôõö÷øùô îúôôûüý
þÿ ������� ���	
��
��
�
�� ��� �
��
��
��
�
���������� �� ����

� !"#$% &'()*+,-./0+ 12++3
45+ t6

Figure 6. DVFS-based SRT-VM provisioning

5. Power-aware Soft Real-Time Cloud Service

5.1. Profitable Delay Analysis

When a soft real-time service misses its deadline, it gives a diminished value of the service to
the user. In this case, the user does not need to pay the whole price for the Cloud resources
because the resource provider has not met the QoS requirements. In this paper, we assume
that a refund due to a service delay is in proportion to the diminished value of the service. The
profit of a Cloud resource provider for providing a soft real-time service i with consideration
of a refund is defined by Equation (8).

profiti = pricei × valuei − costi

= pricei × (1− ϕi(delayi))− costi,
(8)

where valuei is the service quality of the soft real-time service depending on the finish time,
as shown in Figure 2; and costi is the total cost including the power consumption.

Since a soft real-time service gives a value beyond the deadline, the power-aware provisioning
may produce more profit in case of delayed service execution. Figure 6(a) shows the case of
the highest profit when the deadline is met, as in Figure 4. Let us assume that the cost of
t execution is in proportion to the power consumption as in Equation (3). Then, the cost
function of t execution time is defined by Equation (9).

cost(t) = β · t · S2, (9)

where β is a coefficient and S is the associated relative processor speed.
Let us assume that the penalty function of a SRT-VM i is given by a linear function with

the penalty rate k, as shown in Figure 1(c). Then, the profit of finishing at the time di + td,
as shown in Figure 6(b), is given by Equation (10).

profiti(di + td) = pricei × (1 − ktd)− β(di + td)S
2

2 . (10)

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 13

7879
:;<=>?@@A>@@ BCDB EFGH

(b) DVFS based on SRT-VM
IJ

AK@@
D

7L MJJN7L78 79 7978 OPQ 7L RSTT UVWSX QWOQYSPWTZ[\U RO] ^X_`SQW R_XW ^X_aSUb78 79
:;<=>?@@A>@@ B EFGH
(a) DVFS based on HRT-VM

IJ
AK@@

D
7L MJJN7L ST XWc WdUWQb

Figure 7. Acceptance of a RT-VM in HRT-VM and SRT-VM models

Thus, the condition that the profit of delaying the service of the SRT-VM i is greater than
that of meeting deadline is given by Equation (11). That is, the case of Figure 6(b) may provide
more profit to the resource provider than the case of Figure 6(a), if the delayed service time,
td, satisfies Equation (11).

pricei × (1− ktd)− β(di + td)S
2

2 > pricei − βdiS
2

1 (11)

The inequality of Equation (11) is shown in terms of the delayed service time, as in
Equation (12).

td <
S2

1
− S2

2

priceik + βS2
2

(12)

5.2. Resource Provisioning of SRT-VM

When an SRT-VM request is received, a data center provides for the resource broker an
appropriate VM. Similarly to the HRT-VM provisioning algorithm in Figure 5, a data center
finds for the user the minimum priced resource. The difference from the HRT-VM provisioning
is the acceptance test of a VM. In Figure 5, a new VM request is accepted if all VMs on a
PE including the new one meet their deadlines, as in Equation (4). However, the SRT-VM
provisioning algorithm accepts a new VM request as long as the acceptance results in higher
profit. For example, let us consider two VM requests V1 and V2 accepted at the time 0 on
a PE, as shown in Figure 7(a). When a new VM V3 requiring 800 MIPS rate during 3 time
units arrives at the PE, the HRT-VM provisioning algorithm rejects the request since it cannot
meet the deadline. On the contrary, SRT-VM can accept V3 if the acceptance produces higher
profit, as shown in Figure 7(b).

Therefore, the provisioning of SRT-VM should consider the profit in the acceptance test.
Figure 8 shows the pseudo-code of the algorithm for the SRT-VM provisioning. The left side

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

14 K. H. KIM

Algorithm SRT-VM Provisioning (Vi)
VM ← null;
alloc ← −1;
profitmax ← −1;
pricemin ← MAX VALUE;
for k from 1 to N do

Let Tk be the set of current VMs on PEk.
profitcur ← Calculate Profit (Tk, t);
profitnew ← Calculate Profit (Tk ∪ {Vi}, t);
profitk ← profitnew− profitcur;
if profitk > 0 then

pricek ← price of Vi in PEk;
if pricek < pricemin or

(pricek = pricemin and

profitk > profitmax) then

pricemin ← pricek;
profitmax ← profitk ;
alloc← k;

endif

endif

endfor

if alloc 6= −1 then

VM ← create VM (PEalloc, Vi);
endif

return VM;

function Calculate Profit (T, t)
if T = φ then return 0;
TotalMIPS ← 0;
for j from 1 to |T |

MIPSj ← wj/(dj − t);
TotalMIPS ← TotalMIPS + MIPSj ;

endfor

if TotalMIPS > Qk then

for j from 1 to |T |
MIPSj ← Qk ×MIPSj/TotalMIPS;

endif

for j from 1 to |T |
finishTj ← wj/MIPSj ;

Let Vm be the VM with the smallest
finishTj in T .
for j from 1 to |T |

wj ← wj −MIPSj × finishTj ;
delay ← finishTm − dm;
profit ← pricem(1 − ϕ(delay))

−α(finishTm − t)(TotalMIPS/Qk)2

+ Calculate Profit(T−{Vm}, finishTm);
return profit
endfunction

Figure 8. Min-price profitable SRT-VM provisioning

of Figure 8 describes the minimum priced VM allocation, in which it calculates the profit by
calling the function Calculate Profit (). The function Calculate Profit () is shown in the right
side of Figure 8 for a given set of VM-request at the time t. If the number of VMs in T is
nk, there may be nk different finish times. The function calculates the profit for each finish
time by adding the VM profit minus the cost. The function Calculate Profit () implements
this by calling the function recursively without deleting the earliest finishing VM, and adding
the returned profit. The time complexity of the profit calculation is O(n2

k), where nk is the
number of VMs on a PE.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 15

efghijgefgh
ijgklmnopqklmnopq rstogh rsijgrs ijgufphvfwwqvrfxqvkfyqw

zkk{wwfmlhofprfwom|rfxqv}o~q�nlvqy{wwfmlhofprfwom|
zovh�lwklmnopq zkunlvlmhqvoghomgzk�mnqy�wqv}o~q�nlvqyzk�mnqy�wqvrfxqv}o~q�nlvqyzk�mnqy�wqv

Figure 9. CloudSim architecture

Table II. Characteristics of datacenter

of PEs MIPS of PE DVFS level α (10−3)
Machine 0 4 1,800 [0, 1.0] 2.92
Machine 1 4 2,400 [0, 1.0] 4.08
Machine 2 4 3,000 [0, 1.0] 5.37
Machine 3 4 3,400 [0, 1.0] 6.21

6. Simulation Results

We evaluate the proposed algorithms by simulations of power-aware real-time services using
the CloudSim toolkit [7] with an extension enabling power-aware simulations. In order to
support the power-aware VM provisioning, we have implemented additional components in the
CloudSim toolkit, as shown in Figure 9. DvsPE, DvsMachine, and DvsHost are DVFS-enabled
PE, machine, and host, respectively. The component PowerTimeSharedAllocationPolicy

inherits the generic VM provisioning class and implements the simulated algorithms. The
local scheduler in a VM is implemented by PowerTimeSharedVMScheduler.

We have created a data center with four machines with 16 DVFS-enabled processors with
the characteristics shown in Table II. The price model in the simulations follows the Amazon
EC2 Standard small (default) instance type [4], so that the unit price per hour equals to $0.10.
We use the cost function as the power consumption of each machine in Table II.

In the simulations, we have generated 500 HRT-VMs. The total service length (wi) of a
HRT-VM is randomly selected from 2,400 GIs (103 MIs) to 3,600 GIs. The deadline is selected
from 10 to 30 minutes more than the execution time based on a 1000-MIPS machine. The

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

16 K. H. KIM

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

5 min 10 min 15 min 20 min 25 min

P
ro

fit
 (

$)

Inter-arrival time

Static
Adaptive-DVS

δ-Advanced-DVS
Lowest-DVS

(a) Total profit

 0

 20

 40

 60

 80

 100

5 min 10 min 15 min 20 min 25 min

A
cc

ep
ta

nc
e

ra
te

 (
%

)

Inter-arrival time

Static
Adaptive-DVS

δ-Advanced-DVS
Lowest-DVS

(b) Acceptance rate

 0

 0.2

 0.4

 0.6

 0.8

 1

5 min 10 min 15 min 20 min 25 min

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n

Inter-arrival time

Static
Adaptive-DVS

δ-Advanced-DVS
Lowest-DVS

(c) Normalized power consumption

Figure 10. Simulation results

interarrival time between two HRT-VMs follows a Poisson distribution. We have simulated
various interarrival times.

Figure 10(a) shows the total profits generated by each scheme according to the interarrival
time. Static does not use DVFS so that it runs VMs at the maximum processor speed. In
δ-Advanced-DVFS we fix δ as 15%. For higher arrival rates, Static produces higher profits
since it accepts more HRT-VMs. Adaptive-DVFS produces not less profit than Static,
while other DVFS schemes generate higher profit for lower arrival rates due to lower power
consumption.

Figure 10 (b) and (c) show the HRT-VM acceptance rate and the normalized power
consumption compare to Static, respectively. The acceptance rate of Adaptive-DVFS is
close to Static but reduces much energy in case of a low arrival rate. δ-Advanced-DVFS

shows higher acceptance rate with similar power consumption compared to Lowest-DVFS.
Generally, δ-Advanced-DVFS shows the best performance in terms of profit per unit of
consumed power since the amount of scaling up is controlled automatically according to the

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 17

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

5 min 10 min 15 min 20 min 25 min

P
ro

fit
($

)

Inter-arrival time

δ = 10 δ = 30 δ = 50 δ = 70

Figure 11. Impact of δ in δ-Advanced-DVFS

system load. In the case of Adaptive-DVFS, its performance is limited by the simplified
queueing model.

Next, we have varied the value of δ in order to analyze the impact of δ. As shown in Figure 11,
higher δ shows better performance for higher arrival rate since it may accept more VMs. On
the contrary, lower δ produces higher profit in case of lower arrival rate. In the simulations,
the system utilization is generally high regardless of arrival rates, so that δ has little impact
on the profit.

7. Conclusion

In this paper, we have proposed a real-time Cloud service framework where each real-time
service request is modeled as RT-VM in resource brokers. We have investigated power-aware
provisioning of VMs for real-time Cloud services. For hard real-time services, we have provided
several schemes and evaluated them using simulations. For soft real-time services, we have
analyzed power-aware profitable VM provisioning and proposed a provisioning algorithm. The
simulation results have shown that data centers can reduce power consumption and increase
their profit using DVFS schemes. The proposed adaptive schemes, Adaptive-DVFS and δ-
Advanced-DVFS, produce higher profit with lower power consumption regardless of the system
load.

Our on-going work includes more analysis and improvement of the proposed adaptive
schemes. For example, we will compare them with other approaches, such as bin packing
and linear programming, and analyze the impact of the cooling systems. We also plan to

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

18 K. H. KIM

deeper investigate the soft real-time VM provisioning with the consideration of various penalty
functions.

Acknowledgements

This is an extended version of the paper presented at the MGC 2009 Workshop [31]. This work
was primarily carried out during the first author’s visit to the CLOUDS Lab at the University
of Melbourne.

REFERENCES

1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms:
vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems.
25(6):599-616, Elsevier Science, Amsterdam, The Netherlands, June 2009.

2. Buyya R, Beloglazov A, Abawajy J. Energy-efficient management of data center resources for cloud
computing: a vision, architectural elements, and open challenges. In Proc. of the 2010 International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010). Las
Vegas, USA, July 2010.

3. Adiga ND, et al. An overview of the BlueGene/L supercomputer. In Proc. of ACM/IEEE Conf. on
Supercomputing. Baltimore, USA, November 2002.

4. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2.
5. Armbrust M, et al. Above the Clouds: A Berkeley view of cloud computing. Tech. Report No. UCB/EECS-

2009-28, University of California at Berkeley, USA, February 2009.
6. Burd TD, Brodersen RW. Energy efficient cmos microprocessor design. In Proc. of Annual Hawaii Intl.

Conf. on System Sciences, pages 288–297, January 1995.
7. Buyya R, Ranjan R, Calheiros RN. Modeling and simulation of scalable Cloud computing environments

and the CloudSim toolkit: Challenges and opportunities. In Proc. of the 7th High Performance Computing
and Simulation (HPCS 2009). Leipzig, Germany, June 2009.

8. Cardosa M, Korupolu MR, Singh A. Shares and utilities based power consolidation in virtualized server
environments. In Proc. of IFIP/IEEE Intl. Symp. on Integrated Network Management. USA, June 2009.

9. Chase JS, Anderson DC, Thakar PN, Vahdat AM, Doyle RP. Managing energy and server resources in
hosting centers. In Proc. of 8th ACM Symp. on Operating Systems Principles. Banff, Canada, October
2001.

10. Feng XA, Mok AK. A model of hierarchical real-time virtual resources. In Proc. of 23rd IEEE Real-Time
Systems Symposium. Austin, USA, Dec. 2002.

11. Gandhi A, Harchol-Balter M, Das R, Lefurgy C. Optimal power allocation in server farms. In Proc. of
Intl. Joint Conf. on Measurement and Modeling of Computer Systems, pages 157–168. Seattle, USA, June
2009.

12. Ge R, Feng X, Cameron KW. Performance-constrained distributed DVS scheduling for scientific
applications on power-aware clusters. In Proc. of ACM/IEEE Conf. on Supercomputing. Seattle, USA,
November 2005.

13. Hsu C, Feng W. A power-aware run-time system for high-performance computing. In Proc. of ACM/IEEE
Conf. on Supercomputing. Seattle, USA, November 2005.

14. Kappiah N, Freeh VW, Lowenthal DK. Just in time dynamic voltage scaling: Exploiting inter-node
slack to save energy in MPI programs. In Proc. of ACM/IEEE Conf. on Supercomputing. Seattle, USA,
November 2005.

15. Kim KH, Buyya R, Kim J. Power aware scheduling of bag-of-tasks applications with deadline constraints
on DVS-enabled clusters. In Proc. of 7th IEEE Intl. Symp. on Cluster Computing and the Grid
(CCGrid’07), pages 541–548. Rio de Janeiro, Brazil, May 2007.

16. Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G. Power and performance management of
virtualized computing environments via lookahead control. In Proc. of 5th IEEE Intl. Conf. on Autonomic
Computing (ICAC 2008), pages 3–12. Chicago, USA, June 2008.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

POWER-AWARE PROVISIONING OF VMS FOR RT SERVICES 19

17. Markoff J, Lohr S. Intel’s huge bet turns iffy. New York Times Technology Section, September 2002.
18. Niu L, Quan G. Reducing both dynamic and leakage energy consumption for hard real-time systems. In

Proc. of CASES’04. Washington, DC, USA, Sept. 2004.
19. Ongaro D, Cox A, Rixner S. Scheduling i/o in virtual machine monitors. In Proc. of ACM

SIGPLAN/SIGOPS Intl. Conf. on Virtual Execution Environments, pages 1–10. Seattle, USA, March
2008.

20. Rusu C, Ferreira A, Scordino C, Watson A, Melhem R, Mosse D. Energy-efficient real-time heterogeneous
server clusters. In Proc. of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 418–428. San Jose, USA, April 2006.

21. Scheihing P. Creating energy efficient data centers. In Data Center Facilities and Engineering Conference.
Washington, DC, USA, May 2007.

22. Shin I, Lee I. Compositional real-time scheduling framework with periodic model. ACM Transactions on
Embedded Computing Systems, 7(3), April 2008.

23. Son SW, Malkowski K, Chen G, Kandemir M, Raghavan P. Integrated link/cpu voltage scaling for
reducing energy consumption of parallel sparse matrix applications. In Proc. of 20th IEEE Intl. Parallel
and Distributed Processing Symposium. Greece, April 2006.

24. Srikantaiah S, Kansal A, Zhao F. Energy aware consolidation for cloud computing. In Workshop on
Power Aware Computing and Systems (HotPower ’08). San Diego, USA, December 2008.

25. Verma A, Ahuja P, Neogi A. pMapper: Power and migration cost aware application placement in
virtualized systems. In Proc. of 9th ACM/IFIP/USENIX Intl. Conf. on Middleware. Leuven, Belgium,
December 2008.

26. Verma A, Ahuja P, Neogi A. Power-aware dynamic placement of HPC applications. In Proc. of ICS’08,
pages 175–184. Agean Sea, Greece, June 2008.

27. VirtualLogicx Real-Time Virutulalization and VLX. VirtualLogix, http://www.osware.com.
28. Wang L, Lu Y. Efficient power management of heterogeneous soft real-time clusters. In Proc. of IEEE

Real-Time Systems Sym. Barcelona, Spain, Dec. 2008.
29. Warren W, Weigle E, Feng W. High-density computing: A 240-node Beowulf in one cubic meter. In Proc.

of ACM/IEEE Conf. on Supercomputing. Baltimore, USA, November 2002.
30. Yoo S, Park M, Yoo C. A step to support real-time in a virtual machine monitor. In Proc. of 6th IEEE

Consumer Communications and Networking Conference. Las Vegas, USA, January 2009.
31. Kim KH, Beloglazov A, Buyya R. Power-aware provisioning of cloud resources for real-time services.

In Proc. of 7th International Workshop on Middleware for Grids, Clouds and e-Science (MGC 2009).
Urbana Champaign, USA, December 2009.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 00:1–7
Prepared using cpeauth.cls

