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Abstract—Dynamic consolidation of Virtual Machines (VMs) is an effective way to improve the utilization of resources and energy
efficiency in Cloud data centers. Determining when it is best to reallocate VMs from an overloaded host is an aspect of dynamic VM
consolidation that directly influences the resource utilization and Quality of Service (QoS) delivered by the system. The influence on
the QoS is explained by the fact that server overloads cause resource shortages and performance degradation of applications. Current
solutions to the problem of host overload detection are generally heuristic-based, or rely on statistical analysis of historical data. The
limitations of these approaches are that they lead to sub-optimal results and do not allow explicit specification of a QoS goal. We
propose a novel approach that for any known stationary workload and a given state configuration optimally solves the problem of host
overload detection by maximizing the mean inter-migration time under the specified QoS goal based on a Markov chain model. We
heuristically adapt the algorithm to handle unknown non-stationary workloads using the Multisize Sliding Window workload estimation
technique. Through simulations with real-world workload traces from more than a thousand PlanetLab VMs, we show that our approach
outperforms the best benchmark algorithm and provides approximately 88% of the performance of the optimal offline algorithm.

Index Terms—Distributed systems, Cloud computing, virtualization, dynamic consolidation, energy efficiency, host overload detection.

1 INTRODUCTION

Cloud computing has revolutionized the ICT indus-
try by enabling on-demand provisioning of computing
resources based on a pay-as-you-go model. An orga-
nization can either outsource its computational needs
to the Cloud avoiding high up-front investments in a
private computing infrastructure and consequent main-
tenance costs, or implement a private Cloud data center
to improve the resource management and provisioning
processes. However, the problem of data centers is high
energy consumption, which has risen by 56% from 2005
to 2010, and in 2010 accounted to be between 1.1%
and 1.5% of the global electricity use [1]. Apart from
high operating costs, this results in substantial carbon
dioxide (CO3) emissions, which are estimated to be
2% of the global emissions [2]. The problem has been
partially addressed by improvements in the physical
infrastructure of modern data centers. As reported by
the Open Compute Project!, Facebook’s Oregon data
center achieves a Power Usage Effectiveness (PUE) of
1.08, which means that ~93% of the data center’s energy
consumption are consumed by the computing resources.
Therefore, now it is important to focus on the resource
management aspect, i.e., ensuring that the computing
resources are efficiently utilized to serve applications.
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One method to improve the utilization of data center
resources, which has been shown to be efficient [3]-[14],
is dynamic consolidation of Virtual Machines (VMs).
This approach leverages the dynamic nature of Cloud
workloads: the VMs are periodically reallocated using
live migration according to their current resource de-
mand in order to minimize the number of active physical
servers, referred to as hosts, required to handle the work-
load. The idle hosts are switched to low-power modes
with fast transition times to eliminate the static power
and reduce the overall energy consumption. The hosts
are reactivated when the resource demand increases.
This approach has basically two objectives, namely min-
imization of energy consumption and maximization of
the Quality of Service (QoS) delivered by the system,
which form an energy-performance trade-off.

The QoS requirements can be defined in terms of a
variety of metrics and are formalized in the Service Level
Agreements (SLAs). In this work, to specify the QoS
requirements we apply a modification of the workload
independent metric proposed in our previous work [15].
Therefore, the problem transforms into minimization of
energy consumption under QoS constraints. This prob-
lem is too complex to be treated analytically as a whole,
as just the VM placement, which is a part of dynamic VM
consolidation, is an NP-hard problem [4], [9], [13]. More-
over, many aspects of the problem have to be addressed,
e.g., the heterogeneity of physical resources and VMs;
non-stationary and unknown workloads, as observed in
Infrastructure as a Service (IaaS) environments; power
and performance costs of VM migrations; and the large
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scale of Cloud data center infrastructures. Another ar-
gument for splitting the problem is decentralization of
the resource management algorithm, which is important
for scaling the resource management system for efficient
handling of thousands of servers. Therefore, to make
the problem of dynamic VM consolidation tractable and
provide decentralization, in our previous work [15] we
have proposed its division into 4 sub-problems:

1) Deciding when a host is considered to be over-
loaded, so that some VMs should be migrated from
it to other hosts to meet the QoS requirements.

2) Deciding when a host is considered to be under-
loaded, so that its VMs should be migrated, and
the host should be switched to a low-power mode.

3) Selecting VMs to migrate from an overloaded host.

4) Allocating the VMs selected for migration to other
active or re-activated hosts.

In this paper, we focus on the first sub-problem — the
problem of host overload detection. Detecting when a
host becomes overloaded directly influences the QoS,
since if the resource capacity is completely utilized, it
is highly likely that the applications are experiencing
resource shortage and performance degradation. What
makes the problem of host overload detection complex
is the necessity to optimize the time-averaged behavior
of the system, while handling a variety of heterogeneous
workloads placed on a single host. To address this prob-
lem, most of the current approaches to dynamic VM con-
solidation apply either heuristic-based techniques, such
as static utilization thresholds [5]-[8]; decision-making
based on statistical analysis of historical data [12], [13]; or
simply periodic adaptation of the VM allocation [3], [4].
The limitations of these approaches are that they lead to
sub-optimal results and do not allow the administrator
to explicitly set a QoS goal. In other words, the perfor-
mance in regard to the QoS delivered by the system
can only be adjusted indirectly by tuning parameters
of the applied host overload detection algorithm. In
contrast, our approach enables the system administrator
to explicitly specify a QoS goal in terms of a workload in-
dependent QoS metric. The underlying analytical model
allows a derivation of an optimal randomized control
policy for any known stationary workload and a given
state configuration. Our contributions in this paper are:

1) We analytically show that to improve the quality of
VM consolidation, it is necessary to maximize the
mean time between VM migrations initiated by the
host overload detection algorithm.

2) We propose an optimal offline algorithm for host
overload detection, and prove its optimality.

3) We introduce a novel Markov Chain model that
allows a derivation of a randomized control policy
that optimally solves the problem of maximizing
the mean time between VM migrations under an
explicitly specified QoS goal for any known sta-
tionary workload and a given state configuration
in the online setting.
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4) To handle unknown non-stationary workloads, we
apply the Multisize Sliding Window workload es-
timation approach [16] to heuristically build an
adapted algorithm, which leads to approximately
15% higher mean inter-migration time compared
to the best benchmark algorithm for the input
workload traces used in our experiments. The
adapted algorithm leads to approximately 88% of
the mean inter-migration time produced by the
optimal offline algorithm.

We evaluate the algorithm by simulations using real-
world workload traces from more than a thousand
PlanetLab? VMs hosted on servers located in more than
500 places around the world. Our experiments show that
the introduced algorithm outperforms the benchmark al-
gorithms, while meeting the QoS goal in accordance with
the theoretical model. The algorithm uses a workload
independent QoS metric and transparently adapts its
behavior to various workloads using a machine-learning
technique; therefore, it can be applied in an environment
with unknown non-stationary workloads, such as IaaS.

It is important to note that the model proposed in this
paper is based on Markov chains requiring a few funda-
mental modeling assumptions. First of all, the workload
must satisfy the Markov property, which implies memo-
ryless state transitions and an exponential distribution of
state transition delays. These assumptions must be taken
into account in an assessment of the applicability of the
proposed model to a particular system. A more detailed
discussion of the modeling assumptions and validation
of the assumptions is given in Section 6.4.

The remainder of the paper is organized as follows.
In Section 2, we discuss the related work followed by
the objective of host overload detection and workload
independent QoS metric in Sections 3 and 4 respectively.
We introduce an optimal offline algorithm for the prob-
lem of host overload detection in Section 5. In Section 6,
we introduce a Markov model for the problem of host
overload detection and approximate it for unknown
non-stationary workloads in Section 7. In Section 8, we
propose a control algorithm followed by a multi-core
CPU model in Section 9 and an experimental evaluation
in Section 10. We conclude the paper with Section 11
discussing the results and future research directions.

2 RELATED WORK

Prior approaches to host overload detection for energy-
efficient dynamic VM consolidation proposed in the lit-
erature can be broadly divided into 3 categories: periodic
adaptation of the VM placement (no overload detection),
threshold-based heuristics, and decision-making based
on statistical analysis of historical data. One of the first
works, in which dynamic VM consolidation has been ap-
plied to minimize energy consumption in a data center,
has been performed by Nathuji and Schwan [3]. They

2. The PlanetLab project. http://www.planet-lab.org/
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explored the energy benefits obtained by consolidating
VMs using migration and found that the overall energy
consumption can be significantly reduced. Verma et
al. [4] modeled the problem of power-aware dynamic
VM consolidation as a bin-packing problem and pro-
posed a heuristic that minimizes the data center’s power
consumption, taking into account the VM migration cost.
However, the authors did not apply any algorithm for
determining when it is necessary to optimize the VM
placement — the proposed heuristic is simply periodically
invoked to adapt the placement of VMs.

Zhu et al. [5] studied the dynamic VM consolidation
problem and applied a heuristic of setting a static CPU
utilization threshold of 85% to determine when a host is
overloaded. The host is assumed to be overloaded when
the threshold is exceeded. The 85% utilization threshold
has been first introduced and justified by Gmach et
al. [6] based on their analysis of workload traces. In their
more recent work, Gmach et al. [7] investigated bene-
fits of combining both periodic and reactive threshold-
based invocations of the migration controller. VMware
Distributed Power Management [8] operates based on
the same idea with the utilization threshold set to 81%.
However, static threshold heuristics are unsuitable for
systems with unknown and dynamic workloads, as these
heuristics do not adapt to workload changes and do
not capture the time-averaged behavior of the system.
We have enhanced the static threshold heuristic in our
previous work [15] by dynamically adapting the value
of the threshold according to statistical analysis of the
workload history. In this paper, we use static and dy-
namic threshold heuristics as benchmark algorithms in
the experimental evaluation of the proposed approach.

Jung et al. [9] investigated the problem of dy-
namic consolidation of VMs running multi-tier web-
applications to optimize a global utility function, while
meeting SLA requirements. The approach is workload-
specific, as the SLA requirements are defined in terms of
the response time precomputed for each transaction type
of the applications. When the request rate deviates out
of an allowed interval, the system adapts the placement
of VMs and the states of the hosts. Zheng et al. [10] pro-
posed automated experimental testing of the efficiency
of a reallocation decision prior to its application, once
the response time, specified in the SLAs, is violated. In
the approach proposed by Kumar et al. [11], the resource
allocation is adapted when the application’s SLAs are vi-
olated. Wang et al. [17] applied control loops to manage
resource allocation under response time QoS constraints
at the cluster and server levels. If the resource capacity
of a server is insufficient to meet the applications” SLAs,
a VM is migrated from the server. All these works are
similar to threshold-based heuristics in that they rely on
instantaneous values of performance characteristics but
do not leverage the observed history of system states to
estimate the future behavior of the system and optimize
time-averaged performance metrics.

Guenter et al. [12] implemented an energy-aware
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dynamic VM consolidation system focused on web-
applications, whose SLAs are defined in terms of the
response time. The authors applied weighted linear re-
gression to predict the future workload and proactively
optimize the resource allocation. This approach is in
line with the Local Regression (LR) algorithm proposed
in our previous work [15], which we use as one of
the benchmark algorithms in this paper. Bobroff et al.
proposed a server overload forecasting technique based
on time-series analysis of historical data [13]. Unfortu-
nately, the algorithm description given in the paper is too
high level, which does not allow us to implement it to
compare with our approach. Weng et al. [18] proposed a
load-balancing system for virtualized clusters. A cluster-
wide cost of the VM allocation is periodically minimized
to detect overloaded and underloaded hosts, and reallo-
cate VMs. This is a related work but with the opposite
objective — the VMs are deconsolidated to balance the
load across the hosts.

As mentioned above, the common limitations of the
prior works are that, due to their heuristic basis, they
lead to sub-optimal results and do not allow the sys-
tem administrator to explicitly set a QoS goal. In this
work, we propose a novel approach to the problem
of host overload detection inspired by the work of
Benini et al. [19] on power management of electronic
systems using Markov decision processes. We build a
Markov chain model for the case of a known stationary
workload and a given state configuration, and using a
workload independent QoS metric derive a Non-Linear
Programming (NLP) problem formulation. The solution
of the derived NLP problem is the optimal control
policy that maximizes the time between VM migrations
under the specified QoS constraint in the online setting.
Since most real-world systems, including IaaS, experi-
ence highly variable non-stationary workloads, we ap-
ply the Multisize Sliding Window workload estimation
technique proposed by Luiz et al. [16] to heuristically
adapt the proposed model to non-stationary stochastic
environments and practical applications. Although the
final approach is a heuristic, in contrast to the related
works it is based on an analytical model that allows the
computation of an optimal control policy for any known
stationary workload and a given state configuration.

3 THE OBJECTIVE OF A HOST OVERLOAD
DETECTION ALGORITHM

In this section, we show that to improve the quality of
VM consolidation, it is necessary to maximize the time
intervals between VM migrations from overloaded hosts.
Since VM consolidation is applied to reduce the number
of active physical hosts, the quality of VM consolidation
is inversely proportional to H, the mean number of
active hosts over n time steps:

1 n
H=— ; 1
n;aza ()
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where «a; is the number of active hosts at the time step
i =1,2,...,n. A lower value of H represents a better
quality of VM consolidation.

To investigate the impact of decisions made by host
overload detection algorithms on the quality of VM
consolidation, we consider an experiment, where at any
time step the host overload detection algorithm can
initiate a migration from a host due to an overload. There
are two possible consequences of a decision to migrate
a VM relevant to host overload detection: Case 1, when
a VM to be migrated from an overloaded host cannot
be placed on another active host due to insufficient
resources, and therefore, a new host has to be activated
to accommodate the VM; and Case 2, when a VM to be
migrated can be placed on another active host. To study
host overload detection in isolation, we assume that no
hosts are switched off during the experiment, i.e., once
a host is activated, it remains active until n.

Let p be the probability of Case 1, i.e., an extra host
has to be activated to migrate a VM from an over-
loaded host determined by the host overload detection
algorithm. Then, the probability of Case 2 is (1 — p).
Let T be a random variable denoting the time between
two subsequent VM migrations initiated by the host
overload detection algorithm. The expected number of
VM migrations initiated by the host overload detection
algorithm over n time steps is n/E[T], where E[T] is the
expected inter-migration time.

Based on the definitions given above, we can define
X ~ B(n/E[T],p), a binomially distributed random
variable denoting the number of extra hosts switched
on due to VM migrations initiated by the host overload
detection algorithm over n time steps. The expected
number of extra hosts activated is E[X] = np/FE[T)]. Let
A be a random variable denoting the time during which
an extra host is active between the time steps 1 and n.
The expected value of A can be defined as follows:

(n—(i—1E[T))p

(] ) @
< <1+E?T]>.

Let us rewrite (1) as follows:

=23 Y (- a) 3)

(a; — a1).
i=1

The first term a, is a constant denoting the number of
hosts that have been initially active and remain active
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until the end of the experiment. The second term H* =
L 3" 1 (ai—a1) is the mean number of hosts switched on
due to VM migrations being active per unit of time over
n time steps. We are interested in analyzing the average
behavior, and thus estimating the expected value of H*.
It is proportional to a product of the expected number
of extra hosts switched on due to VM migrations and
the expected activity time of an extra host normalized
by the total time, as shown in (4).

E[H™| oc%E[X]E[A]

1 np np n
<z (' 7im) @

2
__P (1 + n) ,
2E[T) E[T]

Since the objective is to improve the quality of
VM consolidation, it is necessary to minimize E[H*|.
From (4), the only variable that can be directly controlled
by a host overload detection algorithm is E[T7; therefore,
to minimize E[H*] the objective of a host overload detec-
tion algorithm is to maximize E[T], i.e., to maximize the
mean time between migrations from overloaded hosts.

4 A WORKLOAD INDEPENDENT QOS METRIC

To impose QoS requirements on the system, we apply
an extension of the workload independent QoS metric intro-
duced in our previous work [15]. We define that a host
can be in one of two states in regard to its load level:
(1) serving regular load; and (2) being overloaded. It is
assumed that if a host is overloaded, the VMs allocated
to the host are not being provided with the required
performance level leading to performance degradation.
To evaluate the overall performance degradation, we
define a metric denoted Overload Time Fraction (OTF):

OTF(uy) = tog“t), 5)

a

where v, is the CPU utilization threshold distinguishing
the non-overload and overload states of the host; ¢, is
the time, during which the host has been overloaded,
which is a function of u;; and ¢, is the total time, during
which the host has been active. Using this metric, SLAs
can be defined as the maximum allowed value of OTE.
For example, if in the SLAs it is stated that OTF must
be less or equal to 10%, it means that on average a
host is allowed to be overloaded for not more than 10%
of its activity time. Since the provider is interested in
maximizing the resource utilization while meeting the
SLAs, from his perspective this requirement corresponds
to the QoS goal of OT'F — 10%, while OTF < 10%. The
definition of the metric for a single host can be extended
to a set of hosts by substituting the time values by the
aggregated time values over the set of hosts.

The exact definition of the state of a host, when it
is overloaded, depends on the specific system require-
ments. However, the value of the CPU utilization thresh-
old u; defining the states of a host does not affect the
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model proposed in this paper, the model allows setting
the threshold to any value. For example, in our experi-
ments, we define that a host is overloaded, when its CPU
utilization is 100%, in which case the VMs allocated to
this host do not get the required CPU capacity leading
to performance degradation. The reasoning behind this
is the observation that if a host serving applications is
experiencing 100% utilization, the performance of the
applications is constrained by the host’s capacity; there-
fore, the VMs are not being provided with the required
performance level.

It has been claimed in the literature that the perfor-
mance of servers degrade, when their load approaches
100% [20], [21]. For example, the study of Srikantaiah
et al. [21] has shown that the performance delivered
by the CPU degrades when the utilization is higher
than 70%. If due to system requirements, it is important
to avoid performance degradation, the proposed OTF
metric allows the specification of the CPU utilization
threshold at the required level below 100%. The host is
considered to be overloaded, when the CPU utilization
is higher than the specified threshold.

In general, other system resources, such as memory,
disk, and network bandwidth, should also be take into
account in the definition of QoS requirements. However,
in this paper we only consider the CPU, as it is one of
the main resources that are usually oversubscribed by
Cloud providers. Therefore, in our analysis we assume
that the other system resources are not significantly over-
subscribed and do not become performance bottlenecks.

Verma et al. [22] proposed a similar metric for es-
timating the SLA violation level in a system, which
they defined as the number of time instances, when
the capacity of a server is less than the demand of all
applications placed on it. However, their metric shows
a non-normalized absolute value, which, for example,
cannot be used to compare systems processing the same
workload for different periods of time. In contrast, the
OTF metric is normalized and does not depend on the
length of the time period under consideration.

In the next section, based on the objective of a host
overload detection algorithm derived in Section 3 and
the OTF metric introduced in this section, we propose
an optimal offline algorithm for the problem of host
overload detection and prove its optimality.

5 AN OPTIMAL OFFLINE ALGORITHM

As shown in Section 3, it is necessary to maximize the
mean time between VM migrations initiated by the host
overload detection algorithm, which can be achieved by
maximizing each individual inter-migration time inter-
val. Therefore, we limit the problem formulation to a
single VM migration, i.e., the time span of a problem
instance is from the end of a previous VM migration and
to the end of the next. Given the results of Sections 3
and 4, the problem of host overload detection can be
formulated as an optimization problem (6)-(7).
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to(tm,ur) — max (6)
to(tm,ut) <M (7)

ta(tm,ur) —

where ¢, is the time when a VM migration has been
initiated; u; is the CPU utilization threshold defining the
overload state of the host; ¢, (¢, u;) is the time, during
which the host has been overloaded, which is a function
of t,, and wu; t, is the total time, during which the host
has been active, which is also a function of t,, and wy;
and M is the limit on the maximum allowed OTF value,
which is a QoS goal expressed in terms of OTE The
aim of a host overload detection algorithm is to select
the t¢,, that maximizes the total time until a migration,
while satisfying the constraint (7). It is important to note
that the optimization problem (6)-(7) is only relevant
to host overload detection, and does not relate to host
underload situations. In other words, maximizing the
activity time of a host is only important for highly loaded
hosts. Whereas for underloaded hosts, the problem is
the opposite — the activity time needs to be minimized;
however, this problem is not the focus of the current
paper and should be investigated separately.

In the offline setting, the state of the system is known
at any point in time. Consider an offline algorithm that
passes through the history of system states backwards
starting from the last known state. The algorithm decre-
ments the time and re-calculates the OTF value fz Eizzg
at each iteration. The algorithm returns the time that
corresponds to the current iteration if the constraint (7)
is satisfied (Algorithm 1).

Algorithm 1 An Optimal Offline Algorithm (OPT)

Input: A system state history
Input: M, the maximum allowed OTF
Output: A VM migration time
1: while history is not empty do
if OTF of history < M then
3 return the time of the last history state
4 else
5: drop the last state from history
6
7

end if
end while

Theorem 1: Algorithm 1 is an optimal offline algorithm
(OPT) for the problem of host overload detection.
Proof: Let the time interval covered by the system
state history be [to,t,], and ¢,, be the time returned
by Algorithm 1. Then, according to the algorithm the
system states corresponding to the time interval (¢, t,,]
do not satisfy the constraint (7). Since t¢,, is the right
bound of the interval [tg,t,,], then t,, is the maximum
possible time that satisfies the constraint (7). Therefore,
tn, is the solution of the optimization problem (6)-(7),
and Algorithm 1 is an optimal offline algorithm for the
problem of host overload detection. O
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6 A MARKOV CHAIN MODEL FOR THE HoST
OVERLOAD DETECTION PROBLEM

In this section, we base our model on the definitions of
Markov chains, a mathematical framework for statistical
modeling of real-world processes. Bolch [23] provides a
detailed introduction to Markov chains.

6.1 The Host Model

Each VM allocated to a host at each point in time utilizes
a part of the CPU capacity determined by the application
workload. The CPU utilization created over a period
of time by a set of VMs allocated to a host constitutes
the host’s workload. For the initial analysis, we assume
that the workload is known a priori, stationary, and
satisfies the Markov property. In other words, the CPU
utilization of a host measured at discrete time steps can
be described by a single time-homogeneous DTMC.

There is a controller component, which monitors the
CPU utilization of the host and according to a host over-
load detection algorithm decides when a VM should be
migrated from the host to satisfy the QoS requirements,
while maximizing the time between VM migrations.
According to Section 5, we limit the problem formulation
to a single VM migration, i.e., the time span of a problem
instance is from the end of a previous VM migration to
the end of the next.

To describe a host as a DTMC, we assign states to N
subsequent intervals of the CPU utilization. For example,
if N = 11, we assign the state 1 to all possible values
of the CPU utilization within the interval [0%,10%), 2
to the CPU utilization within [10%,20%), ..., N to the
value 100%. The state space S of the DTMC contains
N states, which correspond to the defined CPU utiliza-
tion intervals. Using this state definition and knowing
the workload of a host in advance, by applying the
Maximum Likelihood Estimation (MLE) method it is
possible to derive a matrix of transition probabilities P.
The matrix is constructed by estimating the probabilities
of transitions p;; = S between the defined N
states of the DTMC for i j e S where ¢;; is the number
of transitions between states i and j.

We add an additional state (N+1) to the Markov chain
called an absorbing state. A state k € S is said to be an
absorbing state if and only if no other state of the Markov
chain can be reached from it, i.e., pyr = 1. In other words,
once the Markov chain reaches the state £, it stays in that
state indefinitely. The resulting extended state space is
§* = SU{(N + 1)}. For our problem, the absorbing
state (N + 1) represents the state where the DTMC
transitions once a VM migration is initiated. According
to this definition, the control policy can be described
by a vector of the probabilities of transitions from any
non-absorbing state to the absorbing state (N + 1), i.e.,
the probabilities of VM migrations, which we denote m;,
where i € S. To add the state (N + 1) into the model, the
initial transition probability matrix P is extended with a
column of unknown transition probabilities m = [m;]

1371

Vi € S resulting in an extended matrix of transition
probabilities P*:

pTl pTN mq
F= ’ )
p}k\/'l p}k\/’N my
0 0 0 1
where pj; are defined as follows:
pij = pij(1—m;), Vi,j€S. )

In general, the workload experienced by the host’s
VMs can lead to any CPU utilization from 0% to 100%;
therefore, the original DTMC can be assumed to be
ergodic. We will restrict the extended DTMC to the states
in S; therefore, using Q = P —1 [23], the extended matrix
of transition probabilities P* can be transformed into a
corresponding extended matrix of transition rates Q:

pip — 1 Pin mi
Q" = (10)
PN1 Pyy —1 mn
0 0 0 0

In the next section, we formulate the QoS constraint in
terms of the introduced model, derived extended matrix
of transition rates Q*, and OTF metric.

6.2 The QoS Constraint
Let

(11)

then L;(¢) denotes the total expected time the CTMC
spends in the state ¢ during the interval [0,¢). By inte-
grating an equation for the unconditional state probability
vector w(t): dmw(t)/dt = = (t)Q on both sides, a new
differential equation for L(¢) is derived [23]:

dL(t) _
3 = LQ+m(0),

The expected time spent by the CTMC before absorp-
tion can be calculated by finding the limit Lg(co) =
lim,;_, o, Ls(t) restricting the state space to the states in
S. The limit exists due to a non-zero probability of a
transition to the absorbing state (N + 1). However, the
limit does not exist for the state (N + 1). Therefore,
to calculate Ls(oc0), the extended infinitesimal generator
matrix Q" is restricted to the states in S, resulting in
a matrix Qs of the size N x N. The initial probability
vector 7 (0) is also restricted to the states in S resulting in
7s5(0). Restricting the state space to non-absorbing states
allows the computation of lim;_,~, on both sides of (12)
resulting in the following linear equation [23]:

L(0) = 0. 12)

Ls(00)Qs = —ms(0). (13)
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Let IV denote the state of a host when it is overloaded,
e.g.,, when the CPU utilization is equal to 100%, then
the expected time spent in the state NV before absorption
can be calculated by finding Ly (co) from a solution of
the system of linear equations (13). Similarly, the total
expected time of the host being active can be found as
> ics Li(00). Letting the VM migration time be T;,, the
expected OTF can be calculated as follows:

T, + LN(OO)

OTF = .
T + ZiES L;(c0)

(14)

6.3 The Optimization Problem

By the solution of (13), closed-form equations for
Li(00), Ly(0), ..., Ln(c0) are obtained. The unknowns
in these equations are m, mao, ..., my, which completely
describe the policy of the controller. For our problem,
the utility function is the total expected time until
absorption, as the objective is to maximize the inter-
migration time. To introduce the QoS goal in the problem
formulation, we specify a limit M on the maximum
allowed value of the OTF metric as a constraint resulting
in the following optimization problem:

Z L;(0c0) = max
i€S

T + LN(OO)
T+ 2 ies Li(o0)

The equations (15) form an NLP problem. The solution
of this NLP problem is the vector m of the probabilities
of transitions to the absorbing state, which forms the
optimal control policy defined as a PMF m = [m,;] Vi € S.
At every time step, the optimal control policy migrates a
VM with probability m;, where i € S is the current state.
The control policy is deterministic if 3k € S : my, = 1 and
Vi e S,i# k:m; =0, otherwise the policy is randomized.

(15)
< M.

6.4 Modeling Assumptions

The introduced model allows the computation of the
optimal control policy of a host overload detection con-
troller for a given stationary workload and a given state
configuration. It is important to take into account that
this result is based on a few fundamental modeling
assumptions. First of all, it is assumed that the system
satisfies the Markov property, or in other words, the
sojourn times (i.e., the time a CTMC remains in a state)
are exponentially distributed. Assuming an exponential
distribution of sojourn times may not be accurate in
many systems. For instance, state transition delays can
be deterministic due to a particular task scheduling,
or follow other than exponential statistical distribution,
such as a bell-shaped distribution. Another implication
of the Markov property is the assumption of memoryless
state transitions, which means that the future state can be
predicted solely based on the knowledge of the current
state. It is possible to envision systems, in which future
states depend on more than one past state.
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Another assumption is that the workload is stationary
and known a priori, which does not hold in typical
computing environments. In the next section, we show
how the introduced model can be heuristically adapted
to handle unknown non-stationary workloads. The pro-
posed heuristically adapted model removes the assump-
tion of stationary and known workloads; however, the
assumptions implied by the Markov property must still
hold. In Section 10, we evaluate the proposed heuristi-
cally adapted model and test the assumptions through a
simulation study using real workload traces from more
than a thousand PlanetLab VMs. The simulation results
show that the model is efficient for this type of mixed
computing workloads.

With a correct understanding of the basic model as-
sumptions and careful assessment of the applicability of
our model to a particular system, an application of the
model can bring substantial performance benefits to the
resource management algorithms. As demonstrated by
our simulation study in Section 10, our approach out-
performs the benchmark algorithms in terms of both the
mean inter-migration time and the precision of meeting
the specified QoS goal.

7 NON-STATIONARY WORKLOADS

The model introduced in Section 6 works with the
assumption that the workload is stationary and known.
However, this is not the case in systems with unknown
non-stationary workloads, such as laaS. One of the
ways to adapt the model defined for known stationary
workloads to the conditions of initially unknown non-
stationary workloads is to apply the Sliding Window
workload estimation approach proposed by Chung et
al. [24]. The base idea is to approximate a non-stationary
workload as a sequence of stationary workloads U =
(u1,ug,...,uy,) that are enabled one after another. In
this model, the transition probability matrix P becomes
a function of the current stationary workload P(u).
Chung et al. [24] called a policy that makes ideal
decisions for a current stationary workload u; the best
adaptive policy. However, the best adaptive policy re-
quires the perfect knowledge of the whole sequence of
workloads U/ and the times, at which the workloads
change. In reality, a model of a workload u; can only
be built based on the observed history of the system
behavior. Moreover, the time at which the current work-
load changes is unknown. Therefore, it is necessary to
apply a heuristic that achieves results comparable to the
best adaptive policy. According to the Sliding Window
approach, a time window of length [, slides over time
always capturing last [,, events. Let ¢;; be the observed
number of transitions between states ¢ and j, i,j € S,
during the last window [,,. Then, applying the MLE
method, the transition probability p;; is estimated as
pij = chg .- As the window length I, — oo, the
estimator p;; converges to the real value of the transition
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probability p;; if the length of the current stationary
workload u; is equal to I,, [24].

However, the Sliding Window approach introduces 3
sources of errors in the estimated workload:

1) The biased estimation error, which appears when
the window length [,, is shorter than the length of
a sequence of outliers.

2) The resolution error (referred to as the sampling
error by Luiz et al. [16]), which is introduced due
to the maximum precision of the estimates being
limited to 1/1,,.

3) The adaptation time (referred to as the identifica-
tion delay by Luiz et al. [16]), which is a delay
required to completely fill the window with new
data after a switch from a stationary workload u;_;
to a new stationary workload w;.

Luiz et al. [16] extended the Sliding Window ap-
proach by employing multiple windows with different
sizes, where a window to use is selected dynamically
using the information about the previous system state
and variances of the estimates obtained from different
windows. They referred to the extended approach as
the Multisize Sliding Window approach. The proposed
algorithm dynamically selects the best window size to
eliminate the bias estimate error and benefit from both
the small sampling error of large window sizes and small
identification error of small window sizes. In this paper,
we apply the Multisize Sliding Window approach to the
model introduced in Section 6 to adapt it to initially
unknown non-stationary workloads.

We adapt the calculation of the expected OTF (14) by
transforming it to a function of ¢ € R* to incorporate the
information that is known by the algorithm at the time
of decision making:

T, L
oTF(t) = Lm o) £ Ln(oo)
T+t + 3 es Li(o0)
where y(t) is a function returning the total time spent in
the state V during the time interval [0, ¢].

(16)

7.1 Multisize Sliding Window Workload Estimation

In this section we briefly introduce the Multisize Slid-
ing Window approach; for more details, reasoning and
analysis please refer to Luiz et al. [16]. A high level
view of the estimation algorithm is shown in Figure 1.
First of all, to eliminate the biased estimation error, the
previous history is stored separately for each state in
S resulting in S state windows W;, i = 1,2,...,5. Let
J, D, and N; be positive numbers; £ = (J,J + D,J +
2D,...,J+(N;—1)D) a sequence of window sizes; and
lpgee = J + (Nj — 1)D the maximum window size. At
each time ¢, the Previous State Buffer stores the system
state s;_; at the time ¢ — 1 and controls the window
selector, which selects a window W; such that s;_1 = 1.
The notation W (¢) denotes the content of the window
W; in a position k at the time ¢. The selected window
shifts its content one position to the right to store the
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Fig. 1. The Multisize Sliding Window workload estimation

current system state: W (t) = WF(t), VE = 1,... Ly,
discards the rightmost element Wll vmx (t); and stores s, in
the position W/ (¢). Once the selected state window W; is
updated, new probability estimates are computed based
on this state window for all window sizes as follows:

e (W) == )

Ai' t7 m) = s 17
Diji( ) Lo (17)
where “=="is the equivalence operation, i.e, (1 ==1) =
1,(1 == 0) = 0. A computed probability estimate is

stored in N; out of the SSN; estimate windows E;jp,(t),
where i,j € S, and m is the estimate window size index,
1 <m < Nj. Ny estimate windows E;;,,(t) are selected
such that s;_; =i and s; = j, Vm =1,..., N;. Similarly
to the update process of the state windows, the selected
estimate windows shift their contents one position to
the right, discard the rightmost element Efj;;L(t), and
store pi;(t, L) in the position E};, (). To evaluate the
precision of the probability estimates, the next step is to
estimate the variance S(i, j, ¢, m) of the probability esti-
mates obtained from every updated estimate window:

L
) 1 m
mo

=1
. (18)

.. 1 _
Sivgitim) = = (Bl (t) = pig(t. L))
m k=1

where p;;(t,m) is the mean value of the probability
estimates calculated from the state window W; of length
L,,. In order to determine what values of the variance
can be considered to be low enough, a function of
acceptable variance V,.(p;;(t,m), m) is defined [16]:

_ ﬁij (ta £7n)(1 - ]/)\ij(tv £7n))
L '

Using the function of acceptable variance, probability
estimates are considered to be adequate if S(i,j,t,m) <
Vac(Dij (t,m), m). Based on the definitions given above,
a window size selection algorithm can be defined (Al-
gorithm 2). According to the selected window sizes,

Vac (ﬁij (tv m)7 m) (19)
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transition probability estimates are selected from the
estimate windows.

Algorithm 2 The Window Size Selection Algorithm

Input: J, D, Nj, t, 14,5

Output: The selected window size
1 Ly — J
2. fork=0to N;y—1do

if S(i,7,t,k) < Vae(pij(t, k), k) then
lw <~ J+EkD

else
break loop

end if

8: end for

9: return [,

The presented approach addresses the errors men-
tioned in Section 7 as follows:

1) The biased estimation error is eliminated by intro-
ducing dedicated history windows for each state:
even if a burst of transitions to a particular state is
longer than the length of the window, the history
of transitions from the other states is preserved.

2) The sampling error is minimized by selecting the
largest window size constrained by the acceptable
variance function.

3) The identification error is minimized by selecting
a smaller window size when the variance is high,
which can be caused by a change to the next
stationary workload.

8 THE CONTROL ALGORITHM

We refer to a control algorithm based on the model
introduced in Section 6 as the Optimal Markov Host
Overload Detection (MHOD-OPT) algorithm. We refer
to the MHOD-OPT algorithm adapted to unknown non-
stationary workloads using the Multisize Sliding Win-
dow workload estimation technique introduced in Sec-
tion 7 as the Markov Host Overload Detection (MHOD)
algorithm. A high-level view of the MHOD-OPT algo-
rithm is shown in Algorithm 3. In the online setting, the
algorithm is invoked periodically at each time step to
make a VM migration decision.

Algorithm 3 The MHOD-OPT Algorithm

Input: Transition probabilities
Output: A decision on whether to migrate a VM
: Build the objective and constraint functions
: Invoke the brute-force search to find the m vector
if a feasible solution exists then

Extract the VM migration probability

if the probability is < 1 then

return false

end if
end if
return true

R AN U S o S
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Closed-form equations for L;(c0), L2(c0), ..., Ly(c0)
are precomputed offline from (13); therefore, the run-
time computation is not required. The values of transi-
tion probabilities are substituted into the equations for
L1(00), La(0), ..., Ln(0), and the objective and con-
straint functions of the NLP problem are generated by
the algorithm. To solve the NLP problem, we applied a
brute-force search algorithm with a step of 0.1, as its
performance was sufficient for the purposes of simu-
lations. In MHOD-OPT, a decision to migrate a VM is
made only if either no feasible solution can be found, or
the migration probability corresponding to the current
state is 1. The justification for this is the fact that if a
feasible solution exists and the migration probability is
less than 1, then for the current conditions there is no
hard requirement for an immediate migration of a VM.

Algorithm 4 The MHOD Algorithm

Input: A CPU utilization history
Output: A decision on whether to migrate a VM
1: if the CPU utilization history size > T; then
2:  Convert the last CPU utilization value to a state
3:  Invoke the Multisize Sliding Window estimation
to obtain the estimates of transition probabilities
4:  Invoke the MHOD-OPT algorithm
5:  return the decision returned by MHOD-OPT
6: end if
7. return false

The MHOD algorithm shown in Algorithm 4 can be
viewed as a wrapper over the MHOD-OPT algorithm,
which adds the Multisize Sliding Window workload esti-
mation. During the initial learning phase 7}, which in our
experiments was set to 30 time steps, the algorithm does
not migrate a VM. Once the learning phase is over, the al-
gorithm applies the Multisize Sliding Window technique
to estimate the probabilities of transitions between the
states and invokes the MHOD-OPT algorithm passing
the transition probability estimates as the argument.
The result of the MHOD-OPT algorithm invocation is
returned to the user.

9 THE CPU MODEL

The models and algorithms proposed in this paper are
suitable for both single core and multi-core CPU archi-
tectures. The capacity of a single core CPU is modeled in
terms of its clock frequency F. A VM’s CPU utilization
u; is relative to the VM’s CPU frequency f; and is
transformed into a fraction of the host’s CPU utilization
U. These fractions are summed up over the N VMs
allocated to the host to obtain the host’s CPU utilization,

as shown in (20).
N
U=F> fiu. (20)

For the purpose of the host overload detection prob-
lem, we model multi-core CPUs as proposed in our
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TABLE 1
An artificial non-stationary workload

0-60 s 60-86s 86-160 s
poo 1.0 0.0 1.0
por 0.0 1.0 0.0
po 10 0.0 1.0
pii 0.0 1.0 0.0
TABLE 2

Comparison of MHOD, MHOD-OPT and OPT

MHOD-30 MHOD-OPT-30 OPT-30
OTF 29.97% 16.30% 16.30%
Time 87 160 160

previous work [15]. A multi-core CPU with n cores
each having a frequency f is modeled as a single core
CPU with the nf frequency. In other words, F' in (20)
is replaced by nf. This simplification is justified, as
applications and VMs are not tied down to a specific
core, but can by dynamically assigned to an arbitrary
core by a time-shared scheduling algorithm. The only
physical constraint is that the CPU capacity allocated
to a VM cannot exceed the capacity of a single core.
Removing this constraint would require the VM to be
executed on more than one core in parallel. However,
automatic parallelization of VMs and their applications
cannot be assumed.

10 PERFORMANCE EVALUATION
10.1

The purpose of this section is to show that the precision
of the workload estimation technique is important to
achieve high performance of the MHOD algorithm. To
show this, we constructed an artificial workload that
illustrates a case when the MHOD algorithm with the
Multisize Sliding Window workload estimation leads
to lower performance compared to MHOD-OPT due to
its inability to adapt quickly enough to a highly non-
stationary workload.

We define that the host can be in one of two possible
states {0,1}, where the state 1 means that the host is
being overloaded. Let the non-stationary workload be
composed of a sequence of three stationary workloads,
whose probabilities of transitions between the states
are shown in Table 1. We used simulations to evaluate
the algorithms. For this experiment, the OTF constraint
was set to 30%, and the sequence of window sizes for
the Multisize Sliding Window workload estimation was
(30,40, 50, 60, 70, 80, 90, 100). The code of the simulations
is written in Clojure®. To foster and encourage repro-
ducibility of experiments, we have made the source code
of all our simulations publicly available online®.

Importance of Precise Workload Estimation

3. The Clojure programming language. http://clojure.org/
4. https:/ / github.com/beloglazov / tpds-2013-simulation/
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The simulation results are shown in Table 2. According
to the results, for the workload defined in Table 1 the
MHOD-OPT algorithm provides exactly the same perfor-
mance as the optimal offline algorithm (OPT). However,
the MHOD algorithm migrates a VM at the beginning
of the third stationary workload because it is not able to
immediately recognize the change of the workload, as
shown for pgo and pyo in Figure 2.

In summary, even though the Multisize Sliding Win-
dow workload estimation provides high quality of es-
timation [16], in some cases it may result in an infe-
rior performance of the MHOD algorithm compared to
MHOD-OPT. This result was expected, as MHOD-OPT
skips the estimation phase and utilizes the knowledge
of real transition probabilities. The artificial workload
used in this section was specifically constructed to show
that imprecise workload estimation may lead to unsatis-
factory performance of the MHOD algorithm. However,
as shown in the next section, the MHOD algorithm
performs closely to OPT for real-world workloads.

10.2 Evaluation Using PlanetLab Workload Traces

In an environment with multiple hosts, the MHOD
algorithm operates in a decentralized manner, where
independent instances of the algorithm are executed on
every host. Therefore, to evaluate the MHOD algorithm
under a real-world workload, we simulated a single host
with a quad-core CPU serving a set of heterogeneous
VMs. The clock frequency of a single core of the host
was set to 3 GHz, which according to the model in-
troduced in Section 9 transforms into 12 GHz. These
CPU characteristics correspond to a mid-range Amazon
EC2 physical server type [25]. The amount of the host’s
memory was assumed to be enough for the VMs. The
CPU frequency of a VM was randomly set to one of
the values approximately corresponding to the Amazon
EC2 instance typesS: 1.7 GHz, 2 GHz, 2.4 GHz, and
3 GHz. The CPU utilization of the VMs was simulated
based on the data provided as a part of the CoMon
project, a monitoring infrastructure for PlanetLab [26].
The project provides the data measured every 5 minutes
from more than a thousand VMs running in more than

5. http:/ /aws.amazon.com/ec2/instance-types/
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500 locations around the world. For our experiments, we
have randomly chosen 10 days from the workload traces
collected during March and April 2011.

For a simulation run, a randomly generated set of VMs
with the CPU utilization traces assigned is allocated to
the host. At each time step, the host overload detection
algorithm makes a decision of whether a VM should be
migrated from the host. The simulation runs until either
the CPU utilization traces are over, or until a decision to
migrate a VM is made by the algorithm. At the end of a
simulation run, the resulting value of the OTF metric is
calculated according to (5). The algorithm of assigning
the workload traces to a set of VMs is presented in Algo-
rithm 5. To avoid trivial cases and stress the algorithms
with more dynamic workloads, we decided to filter the
original workload traces. We constrained the maximum
allowed OTF after the first 30 time steps to 10% and
the minimum overall OTF to 20%. Using the workload
assignment algorithm, we pregenerated 100 different sets
of VMs that meet the defined OTF constraints and ran
every algorithm for each set of VMs. The workload data
used in the experiments are publicly available online®.

Algorithm 5 The Workload Trace Assignment Algorithm

Input: A set of CPU utilization traces
Output: A set of VMs
1: Randomly select the host’s minimum CPU utilization
at the time 0 from 80%, 85%, 90%, 95%, and 100%
while the host’s utilization < the threshold do
Randomly select the new VM’s CPU frequency
Randomly assign a CPU utilization trace
Add the new VM to the set of created VMs
end while
return the set of created VMs

10.2.1 Benchmark Algorithms

In addition to the optimal offline algorithm introduced
in Section 5, we implemented a number of benchmark
algorithms and ran them with different parameters to
compare with the proposed MHOD algorithm. In this
section we give a brief overview of the benchmark algo-
rithms; a detailed description of each of them is given in
our previous work [15]. The first algorithm is a simple
heuristic based on setting a CPU utilization threshold
(THR), which monitors the host’s CPU utilization and
migrates a VM if the defined threshold is exceeded. This
threshold-based heuristic was applied in a number of
related works [5]-[8]. The next two algorithms apply
statistical analysis to dynamically adapt the CPU utiliza-
tion threshold: based on the median absolute deviation
(MAD), and on the interquartile range (IQR) [15].

Two other algorithms are based on estimation of the
future CPU utilization using local regression (i.e., Loess
method) and a modification of the method robust to
outliers, referred to as robust local regression [15]. We

6. https:/ /github.com/beloglazov /tpds-2013-workload /
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denote these algorithms Local Regression (LR) and Local
Regression Robust (LRR) respectively. The LR algorithm
is in line with the regression-based approach proposed
by Guenter et al. [12]. Another algorithm continuously
monitors the host’s OTF and decides to migrate a VM if
the current value exceeds the defined parameter; we re-
fer to this algorithm as the OTF Threshold (OTFT) algo-
rithm. The last benchmark algorithm, the OTF Threshold
Migration Time (OTFTM) algorithm, is similar to OTFT;
however, it uses an extended metric that includes the
VM migration time:

_ T +to
T+t
where t, is the time, during which the host has been
overloaded; ¢, is the total time, during which the host
has been active; and T, is the VM migration time.

OTF(ty,t.)

@1

10.2.2 MHOD Compared with Benchmark Algorithms

To shorten state configuration names of the MHOD
algorithm, we refer to them by denoting the thresholds
between the utilization intervals. For example, a 3-state
configuration ([0%, 80%), [80%, 100%), 100%) is referred
to as 80-100. We simulated the following 2- and 3-state
configurations of the MHOD algorithm: 80-100, 90-100,
and 100 (a 2-state configuration). We simulated each state
configuration with the OTF parameter set to 10%, 20%
and 30%. In our experiments, the VM migration time
was set to 30 seconds.

In order to find out whether different numbers of
states and different state configurations of the MHOD
algorithm significantly influence the algorithm’s perfor-
mance in regard to the time until a migration and the re-
sulting OTF value, we conducted paired t-tests. The tests
on the produced time until a migration data for compar-
ing MHOD 80-100 with MHOD 100 and MHOD 90-100
with MHOD 100 showed non-statistically significant dif-
ferences with the p-values 0.20 and 0.34 respectively. This
means that the simulated 2- and 3-state configurations of
the MHOD algorithm on average lead to approximately
the same time until a migration. However, there are
statistically significant differences in the resulting OTF
value produced by these algorithms: 0.023% with 95%
Confidence Interval (CI) (0.001%, 0.004%) and p-value =
0.033 for MHOD 100 compared with MHOD 80-100; and
0.022% with 95% CI (0.000%, 0.004%) and p-value = 0.048
for MHOD 100 compared with MHOD 90-100. However,
differences in the resulting OTF value in the order of less
than 0.1% are not practically significant; therefore, we
conclude that the simulated 2- and 3-state configurations
produce approximately the same results. Further in this
section, we compare only the ([0%, 100%), 100%) 2-state
configuration of MHOD with the benchmark algorithms,
as it requires simpler computations compared with the
3-state configurations.

The experimental results comparing the 2-state con-
figuration of the MHOD algorithm (for the MHOD
algorithm, the OTF parameter is denoted in the suffix
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Fig. 3. The resulting OTF value and time until a migration produced by the MHOD and benchmark algorithms

of the algorithm’s name, e.g., for 10%, 20% and 30%:
MHOD-10, MHOD-20 and MHOD-30) with the bench-
mark algorithms are depicted in Figures 3a and 3b. It
is remarkable how closely the resulting OTF value of
the MHOD algorithm resembles the value set as the
parameter of the algorithm for 10% and 20%. The wider
spread for 30% is explained by the characteristics of
the workload: in many cases the overall OTF is lower
than 30%, which is also reflected in the resulting OTF of
the optimal offline algorithm (OPT-30). The experimental
results show that the algorithm is capable of meeting
the specified OTF goal, which is consistent with the
theoretical model introduced in Section 6.

Figures 3a and 3b show that the THR, MAD and IQR
algorithms are not competitive compared with the LR,
LRR and MHOD algorithms, as the produced time until
a migration is low and does not significantly improve
by adjustments of the algorithm parameters. To compare
the LR and LRR algorithms with the MHOD algorithms,
we ran additional simulations of the MHOD algorithm
with the OTF parameter matching the mean value of the
resulting OTF produced by LR and LRR. The following
values of the OTF parameter of the MHOD algorithm
were set to match the mean resulting OTF values of LR
and LRR: to match LR-1.2, LR-1.1 and LR-1.0 — 6.75%,
15.35% and 40% respectively; to match LRR-1.2, LRR-1.1
and LRR-1.0 - 6.76%, 14.9% and 36.6% respectively.

As intended, paired t-tests for the comparison of
MHOD with LR and MHOD with LRR showed non-
statistically significant differences in the resulting OTF
values with both p-values > 0.7. Results of paired t-
tests for comparing the time until a migration produced
by the algorithms with matching resulting OTF values
are shown in Table 3. The results of the comparison of
the MHOD and LRR algorithms are graphically depicted
in Figure 4. According to the results, there is a statisti-
cally significant difference in the time until a migration
produced by the algorithms: the MHOD algorithm on
average leads to approximately 16.4% and 15.4% better

TABLE 3
Paired T-tests with 95% Cls for comparing the time until
a migration produced by MHOD, LR and LRR

Diff. (x10%)

5.61 (3.55, 7.66) < 0.001
5.17 (2.97, 7.38) < 0.001

Alg. 1 (x10%) Alg. 2 (x10%)

MHOD (39.80) LR (34.20)
MHOD (38.69) LRR (33.51)

p-value

time until a migration than LR and LRR respectively
with the same mean resulting OTF values. It is also
interesting to notice from Figure 4 that the spread of
the resulting OTF produced by the MHOD algorithm is
much narrower than LRR’s, which means that MHOD
more precisely meets the QoS goal.

10.2.3 Comparison of MHOD with OTFT and OTFTM

OTFT and OTFTM are two other algorithms that apart
from the MHOD algorithm allow explicit specification
of the QoS goal in terms of the OTF parameter. To
compare the performance of the OTFI, OTFIM and
MHOD algorithms we introduce another performance
metric. This metric is the percentage of SLA violations

Resulting OTF value Time until a migration, x1000 s
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relatively to the total number of VM migrations, where
SLA requirements are defined as OTF < M, M is the
limit on the maximum allowed resulting OTF value.
The SLA violation counter is incremented if after a VM
migration the resulting OTF value is higher than the
value M specified in the SLAs.

We simulated the OTFT, OTFTM and MHOD algo-
rithms using the PlanetLab workload described earlier.
We simulated the algorithms setting the following values
of the OTF parameter as the SLA requirement: 10%, 20%
and 30%. The simulation results are shown in Figure 5.
The graphs show that MHOD leads to slightly lower
resulting OTF values and time until a migration. The
SLA violation levels caused by the algorithms are shown
in Table 4. It is clear that the MHOD algorithm substan-
tially outperforms the OTFT and OTFTM algorithms in
the level of SLA violations leading to only 0.33% SLA
violations, whereas both OTFT and OTFIM cause the
percentage of SLA violations of 81.33%.

The obtained results can be explained by the fact that
both OTFT and OTFIM are unable to capture the overall
behavior of the system over time and fail to meet the
SLA requirements. In contrast, the MHOD algorithm
leverages the knowledge of the past system states and
by estimating future states avoids SLA violations. For
instance, in a case of a steep rise in the load, OTFT
and OTFTM react too late resulting in an SLA violation.
In contrast, MHOD acts more intelligently and by pre-
dicting the potential rise migrates a VM before an SLA
violation occurs. As a result, for the simulated PlanetLab
workload the MHOD algorithm keeps the level of SLA
violations at less than 0.5%.

TABLE 4
SLA violations by OTFT, OTFTM and MHOD

OTF Parameter OTFT OTFTM MHOD
10% 100/100 100/100 0/100
20% 100/100 100/100 1/100
30% 44/100 44/100 0/100
Overall 81.33% 81.33% 0.33%
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TABLE 5
Paired T-tests for comparing MHOD with OPT
OPT MHOD Difference p-value
OTF 18.31% 18.25% 0.06% (-0.03, 0.15) = 0.226
Time 45,767 41,128 4,639 (3617, 5661) < 0.001
10.2.4 Comparison of MHOD with OPT

Figures 3a and 3b include the results produced by the
optimal offline algorithm (OPT) for the same values of
the OTF parameter set for the MHOD algorithm: 10%,
20% and 30%. The results of paired t-tests comparing the
performance of OPT with MHOD are shown in Table 5.
The results show that there is no statistically significant
difference in the resulting OTF value, which means
that for the simulated PlanetLab workload the MHOD
algorithm on average leads to approximately the same
level of adherence to the QoS goal as the optimal offline
algorithm. There is a statistically significant difference in
the time until a migration with the mean difference of
4,639 with 95% CI: (3617, 5661). Relatively to OPT, the
time until a migration produced by the MHOD algo-
rithm converts to 88.02% with 95% CI: (86.07%, 89.97%).
This means that for the simulated PlanetLab workload,
the MHOD algorithm on average delivers approximately
88% of the performance of the optimal offline algorithm,
which is highly efficient for an online algorithm.

11 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have introduced a Markov chain
model and proposed a control algorithm for the prob-
lem of host overload detection as a part of dynamic
VM consolidation. The model allows a system admin-
istrator to explicitly set a QoS goal in terms of the
OTF parameter, which is a workload independent QoS
metric. For a known stationary workload and a given
state configuration, the control policy obtained from
the Markov model optimally solves the host overload
detection problem in the online setting by maximizing
the mean inter-migration time, while meeting the QoS
goal. Using the Multisize Sliding Window workload
estimation approach, we have heuristically adapted the
model to handle unknown non-stationary workloads.
We have also proposed an optimal offline algorithm
for the problem of host overload detection to evaluate
the efficiency of the MHOD algorithm. The conducted
experimental study has led to the following conclusions:

1) For the simulated PlanetLab workload, 3-state con-
figurations of the MHOD algorithm on average
produce approximately the same results as the
([0,100),100) 2-state configuration of the MHOD
algorithm; therefore, we prefer the 2-state configu-
ration, as it requires simpler computations.

2) The 2-state configuration of the MHOD algorithm
outperforms the LRR algorithm, the best bench-
mark algorithm, by producing on average approxi-
mately 15.4% better time until a VM migration with
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the same mean but much narrower spread of the
resulting OTF value, leading to a better quality of
VM consolidation according to Section 3.

3) The MHOD algorithm substantially outperforms
the OTFT and OTFIM algorithms in the level of
SLA violations resulting in less than 0.5% SLA vio-
lations compared to 81.33% of OTFT and OTFTM.

4) The MHOD algorithm on average provides ap-
proximately the same resulting OTF value and ap-
proximately 88% of the time until a VM migration
produced by the optimal offline algorithm (OPT).

5) The MHOD algorithm enables explicit specification
of a desired QoS goal to be delivered by the system
through the OTF parameter, which is successfully
met by the resulting value of the OTF metric.

The introduced model is based on Markov chains
requiring a few fundamental assumptions. It is assumed
that the workload satisfies the Markov property, which
may not be true for all types of workloads. Careful
assessment of the assumptions discussed in Section 6.4
is important in an investigation of the applicability of
the proposed model to a particular system. However,
our experimental study involving multiple mixed het-
erogeneous real-world workloads has shown that the
algorithm is efficient in handling them. For the simulated
PlanetLab workload the MHOD algorithm performed
within a 12% difference from the performance of the
optimal offline algorithm, which is highly efficient for
an online algorithm. As a part of future work, we plan
to implement the MHOD algorithm as an extension of
the VM manager within the OpenStack Cloud platform’
to evaluate the algorithm in a real system as a part of
energy-efficient dynamic VM consolidation.
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