
Energy-Efficient Management of
Virtual Machines in Data Centers for

Cloud Computing

Anton Beloglazov

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

February 2013

Department of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

Copyright c© 2013 Anton Beloglazov

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author
except as permitted by law.

Energy-Efficient Management of Virtual Machines in
Data Centers for Cloud Computing

Anton Beloglazov
Supervisor: Prof. Rajkumar Buyya

Abstract

Cloud computing has revolutionized the information technology industry by enabling
elastic on-demand provisioning of computing resources. The proliferation of Cloud com-
puting has resulted in the establishment of large-scale data centers around the world
containing thousands of compute nodes. However, Cloud data centers consume enor-
mous amounts of electrical energy resulting in high operating costs and carbon dioxide
emissions. In 2010, energy consumption by data centers worldwide was estimated to be
between 1.1% and 1.5% of the global electricity use and is expected to grow further.

This thesis presents novel techniques, models, algorithms, and software for distributed
dynamic consolidation of Virtual Machines (VMs) in Cloud data centers. The goal is to
improve the utilization of computing resources and reduce energy consumption under
workload independent quality of service constraints. Dynamic VM consolidation lever-
ages fine-grained fluctuations in the application workloads and continuously reallocates
VMs using live migration to minimize the number of active physical nodes. Energy
consumption is reduced by dynamically deactivating and reactivating physical nodes
to meet the current resource demand. The proposed approach is distributed, scalable,
and efficient in managing the energy-performance trade-off. The key contributions are:

1. Competitive analysis of dynamic VM consolidation algorithms and proofs of the
competitive ratios of optimal online deterministic algorithms for the formulated
single VM migration and dynamic VM consolidation problems.

2. A distributed approach to energy-efficient dynamic VM consolidation and several
novel heuristics following the proposed approach, which lead to a significant re-
duction in energy consumption with a limited performance impact, as evaluated
by a simulation study using real workload traces.

3. An optimal offline algorithm for the host overload detection problem, as well as
a novel Markov chain model that allows a derivation of an optimal randomized
control policy under an explicitly specified QoS goal for any known stationary
workload and a given state configuration in the online setting.

4. A heuristically adapted host overload detection algorithm for handling unknown
non-stationary workloads. The algorithm leads to approximately 88% of the mean
inter-migration time produced by the optimal offline algorithm.

5. An open source implementation of a software framework for distributed dynamic
VM consolidation called OpenStack Neat. The framework can be applied in both
further research on dynamic VM consolidation, and real OpenStack Cloud deploy-
ments to improve the utilization of resources and reduce energy consumption.

iii

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Anton Beloglazov, 27 February 2013

v

Acknowledgements

PhD is a once-in-a-lifetime opportunity and experience. It is tough at times and may feel
like an eternity, but it teaches you a lot, and I am truly happy that I have had a chance to
complete it. It would not have happened without all those people who helped me along
the way. First of all, I would like to thank my supervisor, Professor Rajkumar Buyya,
who has given me the opportunity to undertake a PhD and provided with invaluable
guidance and advice throughout my PhD candidature.

I would like to express my gratitude to the PhD committee members, Professor Chris
Leckie, Dr. Saurabh Garg, and Dr. Rodrigo Calheiros, for their constrictive comments
and suggestions on improving my work. I would also like to thank all the past and cur-
rent members of the CLOUDS Laboratory, at the University of Melbourne. In particular,
I thank Mukaddim Pathan, Marco Netto, Christian Vecchiola, Suraj Pandey, Marcos dias
de Assunao, Kyong Hoon Kim, Srikumar Venugopal, Charity Lourdes, Mustafizur Rah-
man, Chee Shin Yeo, Xingchen Chu, Rajiv Ranjan, Alexandre di Costanzo, James Broberg,
William Voorsluys, Mohsen Amini, Amir Vahid, Dileban Karunamoorthy, Nithiapidary
Muthuvelu, Michael Mattess, Adam Barker, Jessie Yi Wei, Javadi Bahman, Linlin Wu,
Adel Toosi, Sivaram Yoganathan, Deepak Poola, Mohammed Alrokayan, Atefeh Khos-
ravi, Nikolay Grozev, Sareh Fotuhi, and Yaser Mansouri for their friendship and help dur-
ing my PhD. I have had a great time with them and my other friends from the CSSE/CIS
department – Andrey Kan, Jubaer Arif, Andreas Schutt, Archana Sathivelu, Jason Lee,
Sergey Demyanov, Simone Romano, and Goce Ristanoski to name a few. I also thank my
other friends in Australia, USA, France, and back in Russia.

I thank my previous supervisors, Dr. Sergey Piskunov and Dr. Valery Mishchenko,
for their guidance and help during the work on my Master’s and Bachelor’s theses. I
also thank my collaborators, Prof. Albert Zomaya, Prof. Jemal Abawajy, and Dr. Young
Choon Lee. I acknowledge the University of Melbourne and Australian Federal Gov-
ernment for providing me with scholarships to pursue my doctoral studies. I thank the
external examiners for their excellent reviews and suggestions on improving this thesis.

I am heartily thankful to my parents and sister for their support and encouragement
at all times. Finally, I thank my wife Kseniya for her love, inspiration, patience, and for
making my life filled with joy and happiness.

Anton Beloglazov
Melbourne, Australia
27 February 2013

vii

Contents

1 Introduction 1
1.1 Energy-Efficient Dynamic Consolidation of Virtual Machines 2
1.2 Research Problems and Objectives . 6
1.3 Methodology . 7
1.4 Contributions . 9
1.5 Thesis Organization . 11

2 A Taxonomy and Survey of Energy-Efficient Computing Systems 13
2.1 Introduction . 13
2.2 Power and Energy Models . 16

2.2.1 Static and Dynamic Power Consumption 17
2.2.2 Sources of Power Consumption . 18
2.2.3 Modeling Power Consumption . 20

2.3 Problems of High Power and Energy Consumption 23
2.3.1 High Power Consumption . 24
2.3.2 High Energy Consumption . 26

2.4 The State of the Art in Energy-Efficient Computing Systems 27
2.4.1 Hardware and Firmware Level . 29
2.4.2 Operating System Level . 35
2.4.3 Virtualization Level . 44
2.4.4 Data Center Level . 49

2.5 Thesis Scope and Positioning . 72
2.6 Conclusions . 74

3 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation 77
3.1 Introduction . 77
3.2 Background on Competitive Analysis . 79
3.3 The Single VM Migration Problem . 80

3.3.1 The Cost Function . 81
3.3.2 The Cost of an Optimal Offline Algorithm 82
3.3.3 An Optimal Online Deterministic Algorithm 84

3.4 The Dynamic VM Consolidation Problem 85
3.4.1 An Optimal Online Deterministic Algorithm 86

3.5 Conclusions . 88

ix

4 Heuristics for Distributed Dynamic VM Consolidation 91
4.1 Introduction . 91
4.2 The System Model . 93

4.2.1 Multi-Core CPU Architectures . 95
4.2.2 The Power Model . 95
4.2.3 The Cost of VM Live Migration . 96
4.2.4 SLA Violation Metrics . 97

4.3 Heuristics for Distributed Dynamic VM Consolidation 98
4.3.1 Host Underload Detection . 98
4.3.2 Host Overload Detection . 99
4.3.3 VM Selection . 103
4.3.4 VM Placement . 105

4.4 Performance Evaluation . 106
4.4.1 Experiment Setup . 106
4.4.2 Performance Metrics . 108
4.4.3 Workload Data . 108
4.4.4 Simulation Results and Analysis . 109

4.5 Conclusions . 113

5 The Markov Host Overload Detection Algorithm 115
5.1 Introduction . 115
5.2 Related Work . 117
5.3 The Objective of a Host Overload Detection Algorithm 120
5.4 A Workload Independent QoS Metric . 122
5.5 An Optimal Offline Algorithm . 124
5.6 A Markov Chain Model for Host Overload Detection 125

5.6.1 Background on Markov Chain . 125
5.6.2 The Host Model . 127
5.6.3 The QoS Constraint . 129
5.6.4 The Optimization Problem . 130
5.6.5 Modeling Assumptions . 131

5.7 Non-Stationary Workloads . 132
5.7.1 Multisize Sliding Window Workload Estimation 134

5.8 The Control Algorithm . 136
5.9 The CPU model . 137
5.10 Performance Evaluation . 138

5.10.1 Importance of Precise Workload Estimation 138
5.10.2 Evaluation Using PlanetLab Workload Traces 140

5.11 Conclusions . 146

6 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation 149
6.1 Introduction . 149
6.2 Related Work . 152
6.3 System Design . 154

6.3.1 Requirements and Assumptions . 155
6.3.2 Integration with OpenStack . 155
6.3.3 System Components . 156

x

6.3.4 The Global Manager . 158
6.3.5 The Local Manager . 162
6.3.6 The Data Collector . 163
6.3.7 Data Stores . 165
6.3.8 Configuration . 167
6.3.9 Extensibility of the Framework . 169
6.3.10 Deployment . 172

6.4 VM Consolidation Algorithms . 173
6.4.1 Host Underload Detection . 173
6.4.2 Host Overload Detection . 174
6.4.3 VM Selection . 175
6.4.4 VM Placement . 176

6.5 Implementation . 178
6.6 A Benchmark Suite . 180

6.6.1 Workload Traces . 182
6.6.2 Performance Metrics . 183
6.6.3 Performance Evaluation Methodology 184

6.7 Performance Evaluation . 186
6.7.1 Experimental Testbed . 186
6.7.2 Experimental Setup and Algorithm Parameters 187
6.7.3 Experimental Results and Analysis 188
6.7.4 Scalability Remarks . 191

6.8 Conclusions . 192

7 Conclusions and Future Directions 195
7.1 Conclusions and Discussion . 195
7.2 Future Research Directions . 198

7.2.1 Advanced Distributed VM Placement Algorithms 198
7.2.2 VM Network Topologies . 198
7.2.3 Exploiting VM Resource Usage Patterns 199
7.2.4 Thermal-Aware Dynamic VM Consolidation 200
7.2.5 Dynamic and Heterogeneous SLAs 200
7.2.6 Power Capping . 201
7.2.7 Competitive Analysis of Dynamic VM Consolidation Algorithms . 201
7.2.8 Replicated Global Managers . 202

7.3 Final Remarks . 203

xi

List of Figures

1.1 The worldwide data center energy consumption 2000-2010 [70] 2
1.2 The high-level system view . 4
1.3 The thesis organization . 11

2.1 Energy consumption at different levels in computing systems 15
2.2 Power consumption by server components [83] 19
2.3 The relation between power consumption and CPU utilization of a server [44] 22
2.4 The CPU utilization from the PlanetLab nodes over a period of 10 days . . 25
2.5 A high-level taxonomy of power and energy management 28
2.6 The operating system level taxonomy . 36
2.7 The data center level taxonomy . 52

4.1 The system model . 94
4.2 Algorithm comparison in regard to the ESV, SLAV, OTF, and PDM metrics,

as well as energy consumption, and the number of VM migrations 110

5.1 The Multisize Sliding Window workload estimation 134
5.2 The estimated p̂00 compared to p00 . 139
5.3 The resulting OTF value and time until a migration produced by the MHOD

and benchmark algorithms . 142
5.4 Comparison of MHOD with LRR . 144
5.5 Comparison of OTFT, OTFTM and MHOD 145

6.1 The combined deployment of OpenStack and OpenStack Neat 150
6.2 The deployment diagram . 157
6.3 The global manager: a sequence diagram of handling an underload request 158
6.4 The global manager: a sequence diagram of handling an overload request 159
6.5 The local manager: an activity diagram . 163
6.6 The experimental results . 194

xiii

List of Tables

2.1 Estimated average consumption per server class (W/U) 2000–2006 [69] . . 14
2.2 Operating system level research . 37
2.3 Data center level research . 50
2.3 Data center level research (continued) . 51
2.4 The thesis scope . 73

4.1 Power consumption by the selected servers at different load levels in Watts 96
4.2 Characteristics of the workload data (CPU utilization) 108
4.3 Comparison of VM selection policies using paired T-tests 109
4.4 Tukey’s pairwise comparisons using the transformed ESV. Values that do

not share a letter are significantly different. 111
4.5 Simulation results of the best algorithm combinations and benchmark al-

gorithms (median values) . 113

5.1 An artificial non-stationary workload . 138
5.2 Comparison of MHOD, MHOD-OPT and OPT 139
5.3 Paired T-tests with 95% CIs for comparing the time until a migration pro-

duced by MHOD, LR and LRR . 143
5.4 SLA violations by OTFT, OTFTM and MHOD 146
5.5 Paired T-tests for comparing MHOD with OPT 147

6.1 The database schema . 166
6.2 OpenStack Neat’s configuration options . 167
6.2 OpenStack Neat’s configuration options (continued) 168
6.2 OpenStack Neat’s configuration options (continued) 169
6.3 Interfaces of VM consolidation algorithms and their factory functions . . . 170
6.4 Arguments of VM consolidation algorithms and their factory functions . . 171
6.5 The OpenStack Neat codebase summary . 180
6.6 Open source libraries used by OpenStack Neat 181
6.7 The experimental results (mean values with 95% CIs) 188
6.8 Energy consumption estimates . 190
6.9 The execution time of components in seconds (mean values with 95% CIs) 191

xv

Chapter 1

Introduction

CLOUD computing has revolutionized the Information and Communication Tech-

nology (ICT) industry by enabling on-demand provisioning of elastic computing

resources on a pay-as-you-go basis. An organization can either outsource its computa-

tional needs to the Cloud avoiding high up-front investments in a private computing in-

frastructure and consequent costs of maintenance and upgrades, or build a private Cloud

data center to improve the resource management and provisioning processes.

The proliferation of Cloud computing has resulted in the establishment of large-scale

data centers around the world containing thousands of compute nodes. However, Cloud

data centers consume huge amounts of electrical energy resulting in high operating costs

and carbon dioxide (CO2) emissions to the environment. As shown in Figure 1.1, en-

ergy consumption by data centers worldwide has risen by 56% from 2005 to 2010, and in

2010 is accounted to be between 1.1% and 1.5% of the total electricity use [70]. Further-

more, carbon dioxide emissions of the ICT industry are currently estimated to be 2% of

the global emissions, which is equivalent to the emissions of the aviation industry [52]

and significantly contributes to the greenhouse effect. As projected by Koomey [69], en-

ergy consumption in data centers will continue to grow rapidly unless advanced energy-

efficient resource management solutions are developed and applied.

To address the problem of high energy use, it is necessary to eliminate inefficiencies

and waste in the way electricity is delivered to computing resources, and in the way

these resources are utilized to serve application workloads. This can be done by im-

proving both the physical infrastructure of data centers, and the resource allocation and

management algorithms. Recent advancement in the data center design have resulted in

a significant increase of the infrastructure efficiency. As reported by the Open Compute

1

2 Introduction

201020052000

300

250

200

150

100

50

0

Year

B
il

li
o

n
 k

W
h

/y
ea

r

Figure 1.1: The worldwide data center energy consumption 2000-2010 [70]

project, Facebook’s Oregon data center achieved a Power Usage Effectiveness (PUE) of

1.08 [89], which means that approximately 91% of the data center’s energy consumption

is consumed by the computing resources.

A source of energy waste lies in the inefficient usage of computing resources. Data col-

lected from more than 5000 production servers over a six-month period have shown that

although servers are usually not idle, the utilization rarely approaches 100% [13]. Most

of the time servers operate at 10-50% of their full capacity, leading to extra expenses on

over-provisioning, and thus extra Total Cost of Acquisition (TCA) [13]. Moreover, man-

aging and maintaining over-provisioned resources results in the increased Total Cost of

Ownership (TCO). In addition, the problem of low server utilization is exacerbated by

narrow dynamic power ranges of servers: even completely idle servers still consume up

to 70% of their peak power [44]. Therefore, keeping servers underutilized is highly inef-

ficient from the energy consumption perspective. This thesis focuses on the problem of

energy-efficient resource management in Cloud data centers, i.e., ensuring that comput-

ing resources are efficiently utilized to serve application workloads to minimize energy

consumption, while maintaining the required Quality of Service (QoS).

1.1 Energy-Efficient Dynamic Consolidation of Virtual Machines

An ideal way of addressing the energy inefficiency problem is implementing an energy-

proportional computing system, where energy consumption of the computing resources

1.1 Energy-Efficient Dynamic Consolidation of Virtual Machines 3

is proportional to the application workload [13]. This approach is partially implemented

through the widely adopted Dynamic Voltage and Frequency Scaling (DVFS) technique.

DVFS allows the dynamic adjustment of the voltage and frequency of the CPU based

on the current resource demand. As a result, current desktop and server CPUs can con-

sume less than 30% of their peak power in low-activity modes, leading to dynamic power

ranges of more than 70% [13].

In contrast, dynamic power ranges of all the other server components are much nar-

rower: less than 50% for Dynamic Random Access Memory (DRAM), 25% for disk drives,

15% for network switches, and negligible for other components [44]. The reason is that

only the CPU supports active low-power modes, whereas other components can only be

completely or partially switched off. However, the performance overhead of a transition

between the active and inactive modes is substantial. For example, a disk drive in the

deep-sleep mode consumes negligible power, but a transition to the active mode incurs a

latency 1000 times higher than the regular access latency. Power inefficiency of the server

components in the idle state leads to a narrow overall dynamic power range of a server

on the order of 30%. This means that even if a server is completely idle, it still consumes

up to 70% of its peak power.

One method to improve the utilization of resources and reduce energy consump-

tion, which has been shown to be efficient is dynamic consolidation of Virtual Machines

(VMs) [59,72,86,100,119] enabled by the virtualization technology. Virtualization allows

Cloud providers to create multiple VM instances on a single physical server, thus im-

proving the utilization of resources and increasing the Return On Investment (ROI). The

reduction in energy consumption can be achieved by switching idle nodes to low-power

modes (i.e., sleep, hibernation), thus eliminating the idle power consumption (Figure 1.2).

Another capability provided by virtualization is live migration, which is the ability to

transfer a VM between physical servers (referred to as hosts, or nodes) with a close to

zero downtime. Using live migration [35] VMs can be dynamically consolidated to lever-

age fine-grained fluctuations in the workload and keep the number of active physical

servers at the minimum at all times. Dynamic VM consolidation consists of two basic

processes: migrating VMs from underutilized hosts to minimize the number of active

hosts; and offloading VMs from hosts when those become overloaded to avoid perfor-

4 Introduction

Power On Power Off

Physical

compute

nodes

Virtualization layer
(VMMs, local resource managers)

Consumer, scientific, and business
applications

Global resource managers

User User User

VM provisioning SLA negotiation Application requests

Virtual

machines

and user

applications

Figure 1.2: The high-level system view

mance degradation experienced by the VMs, which could lead to a violation of the QoS

requirements. Idle hosts are automatically switched to a low-power mode to eliminate

the static power and reduce the overall energy consumption by the system. When re-

quired, hosts are reactivated to accommodate new VMs or VMs being migrated.

However, dynamic VM consolidation in Clouds is not trivial since modern service

applications often experience highly variable workloads causing dynamic resource usage

patterns. Therefore, unconstrained VM consolidation may lead to performance degrada-

tion when an application encounters an increasing demand resulting in an unexpected

rise of the resource usage. If the resource requirements of an application are not ful-

filled, the application may face increased response times, time-outs or failures. Ensuring

QoS defined via Service Level Agreements (SLAs) established between Cloud providers

and their customers is essential for Cloud computing environments. Therefore, Cloud

providers have to deal with the energy-performance trade-off – minimizing energy con-

sumption, while meeting QoS requirements.

The scope of this thesis is energy-efficient dynamic VM consolidation in Infrastruc-

ture as a Service (IaaS) Cloud data centers under QoS constraints. The focus on IaaS en-

1.1 Energy-Efficient Dynamic Consolidation of Virtual Machines 5

vironments, e.g., Amazon Elastic Compute Cloud (EC2)1, imposes several requirements

stipulated by the properties of the environment. Addressing them distinguishes the ap-

proach presented in this thesis from the related work, as discussed in Chapter 2.

In particular, it is necessary to handle mixed heterogeneous workloads since multi-

ple independent users dynamically provision VMs and deploy various types of applica-

tions on shared physical resources. This means that the resource provider is unaware of

the application types deployed in the system; therefore, the system must be application-

agnostic, i.e., able to efficiently handle unknown mixed workloads. Another require-

ment is providing QoS guarantees specified in the SLAs negotiated between the Cloud

provider and consumers. Since multiple different applications can coexist in the system,

it is necessary to apply a workload independent QoS metric to quantify the performance

delivered to the applications. Such a QoS metric can be used to specify system-wide

workload independent QoS requirements.

Another aspect distinguishing the work presented in this thesis from the related re-

search is the distributed architecture of the VM management system. A distributed VM

management system architecture is essential for large-scale Cloud providers, as it enables

the natural scaling of the system to thousands of compute nodes. An illustration of the

importance of scalability of a VM management system is the fact that Rackspace2, a well-

known IaaS provider, currently manages tens of thousands of servers. Moreover, the

number of servers continuously grows: Rackspace has increased the total server count

in the second quarter of 2012 to 84,978 up from 82,438 servers at the end of the first

quarter [99]. Another benefit of making the VM management system distributed is the

improved fault tolerance by eliminating single points of failure: even if a compute or

controller node fails, it would not render the whole system inoperable.

This thesis presents a complete solution to energy-efficient distributed dynamic VM

consolidation under QoS constraints. It is evaluated by simulations using workload

traces from more than a thousand PlanetLab VMs3, as well as real experiments on a multi-

node testbed using OpenStack Neat4 – a prototype system implemented as a transparent

add-on to the OpenStack Cloud platform.

1Amazon EC2. http://aws.amazon.com/ec2/
2The Rackspace Cloud. http://www.rackspace.com/
3The PlanetLab platform. http://www.planet-lab.org/
4The OpenStack Neat framework. http://openstack-neat.org/

http://aws.amazon.com/ec2/
http://www.rackspace.com/
http://www.planet-lab.org/
http://openstack-neat.org/

6 Introduction

1.2 Research Problems and Objectives

This thesis tackles the research challenges in relation to energy-efficient distributed dy-

namic VM consolidation in IaaS environments under QoS constraints. In particular, the

following research problems are investigated:

• How to define workload-independent QoS requirements. Since multiple appli-

cations of various types can coexist in an IaaS environment and share physical re-

sources, it is necessary to derive a workload independent QoS metric that can be

used to define system-wide QoS constraints.

• When to migrate VMs. Dynamic VM consolidation comprises two basic processes:

(1) migrating VMs from overloaded servers to avoid performance degradation; and

(2) migrating VMs from underloaded servers to improve the utilization of resources

and minimize energy consumption. A crucial decision that must be made in both

situations is determining the best time to migrate VMs to minimize energy con-

sumption, while satisfying the defined QoS constraints.

• Which VMs to migrate. Once a decision to migrate VMs from a server is made,

it is required to select one or more VMs from the full set of VMs allocated to the

server, which must be reallocated to other servers. The problem consists in de-

termining the best subset of VMs to migrate that will provide the most beneficial

system reconfiguration.

• Where to migrate the VMs selected for migration. Determining the best place-

ment of new VMs or the VMs selected for migration to other servers is another

essential aspect that influences the quality of VM consolidation and energy con-

sumption by the system.

• When and which physical nodes to switch on/off. To save energy, VM consoli-

dation should be combined with dynamic switching of the power states of nodes,

which addresses the problem of narrow power ranges of servers by eliminating

power consumption in the idle state. To optimize energy consumption by the sys-

tem and avoid violations of the QoS requirements, it is necessary to efficiently de-

termine when and which physical nodes should be deactivated to save energy, or

reactivated to handle increases in the demand for resources.

• How to design distributed dynamic VM consolidation algorithms. To provide

1.3 Methodology 7

scalability and eliminate single points of failure, it is necessary to design dynamic

VM consolidation algorithms in a distributed manner. The problem is that tradi-

tionally global resources management algorithms are centralized. Therefore, a new

approach is required to make the dynamic VM consolidation system distributed.

To deal with the challenges associated with the above research problems, the follow-

ing objectives have been delineated:

• Explore, analyze, and classify the research in the area of energy-efficient computing

to gain a systematic understanding of the existing techniques and approaches.

• Conduct competitive analysis of algorithms for dynamic VM consolidation to ob-

tain theoretical performance estimates and insights into the design of online algo-

rithms for dynamic VM consolidation.

• Propose a workload independent QoS metric that can be used in defining system-

wide QoS constraints in IaaS environments.

• Propose an approach to designing a dynamic VM consolidation system in a dis-

tributed manner.

• Develop online algorithms for energy-efficient distributed dynamic VM consolida-

tion for IaaS environments satisfying workload-independent QoS constraints.

• Design and implement a distributed dynamic VM consolidation system that can be

used to evaluate the proposed algorithms on a multi-node IaaS testbed.

1.3 Methodology

The research methodology followed in this thesis consists of several consecutive steps

summarized below:

1. Conduct theoretical analysis of dynamic VM consolidation algorithms to obtain

theoretical performance estimates and insights into designing such algorithms.

Since dynamic VM consolidation algorithms are online, the framework of com-

petitive analysis has been applied. In this framework, the theoretical performance

of an online algorithm is evaluated in comparison with the performance of an op-

timal offline algorithm designed for the same problem.

2. Develop distributed dynamic VM consolidation algorithms based on the insights

8 Introduction

from the conducted competitive analysis and derived system model. Since the

problem of dynamic VM consolidation involves a set of algorithms as discussed in

the following chapters, multiple algorithms have been developed based on prior

work on approximation algorithms for the bin packing problem, statistical analy-

sis of historical data, and Markov chain modeling.

3. Evaluate the proposed algorithms through discrete-event simulation using the

CloudSim simulation toolkit5 extended to support power and energy-aware sim-

ulations. As the target system is an IaaS, a Cloud computing environment that is

intended to create a view of infinite computing resources to the users, it is essen-

tial to evaluate the proposed algorithms on a large-scale virtualized data center

infrastructure. However, conducting repeatable large-scale experiments on a real

infrastructure is extremely difficult. Therefore, to ensure the repeatability and re-

producibility of experiments, as well as carry out large-scale experiments, discrete-

event simulation has been chosen as the initial way to evaluate the performance

of the proposed algorithms.

4. Simulate application workloads using real-world workload traces from the Plan-

etLab platform. The CPU utilization of the VMs has been simulated based on the

data provided as a part of the CoMon project, a monitoring infrastructure for Plan-

etLab [92]. The project provides data collected every 5 minutes from more than a

thousand VMs instantiated in more than 500 locations around the world. The

workload from PlanetLab VMs is representative of an IaaS Cloud environment,

such as Amazon EC2, as the VMs are created and managed by multiple indepen-

dent users, and the infrastructure provider is not aware of application workloads

in the VMs. Furthermore, the overall system workload is composed of multiple

independent heterogeneous applications, which also corresponds to an IaaS envi-

ronment. The difference from a public Cloud provider, such as Amazon EC2, is

that PlanetLab is an infrastructure mainly used for research purposes; therefore,

the applications are potentially closer to the HPC type, which are typically CPU-

intensive with lower dynamics in the resource utilization compared with web ser-

vices. HPC workload is easier to handle for a VM consolidation system due to

5The CloudSim simulation toolkit. http://code.google.com/p/cloudsim/

http://code.google.com/p/cloudsim/

1.4 Contributions 9

infrequent variation in the resource utilization. Therefore, to stress the system, the

original workload traces are filtered to select the ones that exhibit high variability.

5. Implement a system prototype as an add-on to an open source Cloud platform,

which has been chosen to be OpenStack6. Apart from simulations, it is impor-

tant to evaluate the proposed algorithms on a real infrastructure. A prototype dis-

tributed dynamic VM consolidation system has been implemented and used to ex-

perimentally evaluate the proposed algorithms on a real multi-node IaaS testbed.

1.4 Contributions

The contributions of this thesis can be broadly divided into 4 categories: classification

and analysis of the area, competitive analysis of dynamic VM consolidation algorithms,

novel algorithms for distributed dynamic VM consolidation, and implementation of a

framework for distributed dynamic VM consolidation. The key contributions are:

1. A taxonomy and survey of the state-of-the-art in energy-efficient computing.

2. Competitive analysis of dynamic VM consolidation algorithms:

• Formal definitions of the single VM migration and dynamic VM consolida-

tion problems.

• A proof of the cost incurred by an optimal offline algorithm for the single VM

migration problem.

• Competitive analysis and proofs of the competitive ratios of optimal online

deterministic algorithms for the single VM migration and dynamic VM con-

solidation problems.

3. Novel algorithms for distributed dynamic VM consolidation:

• The introduction of a distributed approach to energy and performance effi-

cient dynamic VM consolidation.

• Novel heuristics for the problem of energy and performance efficient dy-

namic VM consolidation following the introduced distributed approach.

• A simulation-based evaluation and performance analysis of the algorithms.

6The OpenStack Cloud platform. http://openstack.org/

http://openstack.org/

10 Introduction

• An analytical model showing that to improve the quality of VM consolida-

tion, it is necessary to maximize the mean time between VM migrations ini-

tiated by the host overload detection algorithm.

• An optimal offline algorithm for the host overload detection problem, and

proof of its optimality.

• A novel Markov chain model that allows a derivation of a randomized con-

trol policy that optimally solves the problem of maximizing the mean time

between VM migrations under an explicitly specified QoS goal for any known

stationary workload and a given state configuration in the online setting.

• A heuristically adapted algorithm for handling unknown non-stationary work-

loads using the Multisize Sliding Window workload estimation approach [80],

which leads to comparable to the best benchmark algorithm performance in

terms of the inter-migration time, while providing the advantage of explicit

specification of a QoS goal. The adapted algorithm leads to approximately

88% of the mean inter-migration time produced by the optimal offline algo-

rithm for the input workload traces used in the experiments.

4. Software implementation of OpenStack Neat7, a framework for distributed dy-

namic VM consolidation as an add-on to the OpenStack Cloud platform:

• An architecture of an extensible software framework for dynamic VM con-

solidation designed to transparently integrate with OpenStack installations

and allowing configuration-based substitution of multiple implementations

of algorithms for each of the sub-problems of dynamic VM consolidation.

• An open source software implementation of the framework in Python re-

leased under the Apache 2.0 license and publicly available online.

• An implementation of several algorithms for dynamic VM consolidation pro-

posed and evaluated by simulations in the previous chapters.

• An initial version of a benchmark suite comprising the software framework,

workload traces, performance metrics, and methodology for evaluating and

comparing distributed dynamic VM consolidation solutions.

• Experimental evaluation of the framework on a 5-node OpenStack deploy-

7The OpenStack Neat framework. http://openstack-neat.org/

http://openstack-neat.org/

1.5 Thesis Organization 11

A
p
p
ro

ac
h

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6

C
o
n
tr

ib
u
ti

o
n

Literature

review

Theoretical

analysis

Novel algorithms,

simulation

System

prototype

Taxonomy

and survey

Competitive

analysis

Statistics,

bin packing

Markov

chains

OpenStack

add-on

Figure 1.3: The thesis organization

ment using real-world application workload traces collected from more than

a thousand PlanetLab VMs [92]. The experiments have shown that dynamic

VM consolidation is able to reduce energy consumption by the compute nodes

by up to 30% with a limited performance impact.

1.5 Thesis Organization

The core chapters of this thesis are structured as shown in Figure 1.3 and are derived

from several journal papers published during the PhD candidature. The remainder of

the thesis is organized as follows:

• Chapter 2 presents a taxonomy and survey of energy-efficient computing systems,

as well as the scope of this thesis and its positioning in the area. This chapter is

derived from [18]:

– Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya,

“A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Com-

puting Systems,” Advances in Computers, Marvin V. Zelkowitz (editor), Volume

82, Pages: 47-111, Academic Press, USA, 2011.

• Chapter 3 presents competitive analysis of dynamic VM consolidation algorithms.

This chapter is derived from [16]:

– Anton Beloglazov and Rajkumar Buyya, “Optimal Online Deterministic Al-

gorithms and Adaptive Heuristics for Energy and Performance Efficient Dy-

12 Introduction

namic Consolidation of Virtual Machines in Cloud Data Centers,” Concurrency

and Computation: Practice and Experience (CCPE), Volume 24, Issue 13, Pages:

1397-1420, John Wiley & Sons, Ltd, USA, 2012.

• Chapter 4 proposes novel algorithms for distributed dynamic VM consolidation.

This chapter is derived from [15, 16]:

– Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya, “Energy-Aware Re-

source Allocation Heuristics for Efficient Management of Data Centers for

Cloud Computing,” Future Generation Computer Systems (FGCS), Volume 28,

Issue 5, Pages: 755-768, Elsevier Science, The Netherlands, 2012.

– Anton Beloglazov and Rajkumar Buyya, “Optimal Online Deterministic Al-

gorithms and Adaptive Heuristics for Energy and Performance Efficient Dy-

namic Consolidation of Virtual Machines in Cloud Data Centers,” Concurrency

and Computation: Practice and Experience (CCPE), Volume 24, Issue 13, Pages:

1397-1420, John Wiley & Sons, Ltd, USA, 2012.

• Chapter 5 proposes a novel host overload detection algorithm based on a Markov

chain model. This chapter is derived from [17]:

– Anton Beloglazov and Rajkumar Buyya, “Managing Overloaded Hosts for

Dynamic Consolidation of Virtual Machines in Cloud Data Centers Under

Quality of Service Constraints,” IEEE Transactions on Parallel and Distributed

Systems (TPDS), Volume 24, Issue 7, Pages: 1366-1379, IEEE CS Press, USA,

2013.

• Chapter 6 describes the architecture and implementation of OpenStack Neat, a

framework for distributed dynamic VM consolidation in OpenStack Clouds. This

chapter is derived from:

– Anton Beloglazov and Rajkumar Buyya, “OpenStack Neat: A Framework for

Dynamic Consolidation of Virtual Machines in OpenStack Clouds,” Software:

Practice and Experience (SPE), John Wiley & Sons, Ltd, USA, 2013 (in review).

• Chapter 7 concludes the thesis with a summary of the main findings, discussion of

future research directions, and final remarks.

Chapter 2

A Taxonomy and Survey of
Energy-Efficient Computing Systems

Traditionally, the development of computing systems has been focused on performance improve-

ments driven by the demand of applications from consumer, scientific, and business domains. How-

ever, the ever-increasing energy consumption of computing systems has started to limit further per-

formance growth due to overwhelming electricity bills and carbon dioxide footprints. Therefore, the

goal of the computer system design has been shifted to power and energy efficiency. To identify open

challenges in the area and facilitate further advancements, it is essential to synthesize and classify the

research on power- and energy-efficient design conducted to date. This chapter discusses the causes

and problems of high power / energy consumption, and presents a taxonomy of energy-efficient design

of computing systems covering the hardware, operating system, virtualization, and data center levels.

The key works in the area are surveyed and mapped onto the taxonomy to guide future design and

development efforts. This chapter concludes with a discussion of the scope of the current thesis and its

positioning within the research area.

2.1 Introduction

THE primary focus of designers of computing systems and the industry has been

on the improvement of the system performance. According to this objective, the

performance has been steadily growing driven by more efficient system design and in-

creasing density of the components described by Moore’s law [84]. Although the perfor-

mance per watt ratio has been constantly rising, the total power drawn by computing

systems has hardly decreased. Oppositely, it has been increasing every year that can be

illustrated by the estimated average power use across three classes of servers presented

in Table 2.1 [69]. If this trend continues, the cost of energy consumed by a server during

its lifetime will exceed the hardware cost [12]. The problem is even worse for large-scale

13

14 A Taxonomy and Survey of Energy-Efficient Computing Systems

Table 2.1: Estimated average consumption per server class (W/U) 2000–2006 [69]

Server class 2000 2001 2002 2003 2004 2005 2006

Volume 186 193 200 207 213 219 225
Mid-range 424 457 491 524 574 625 675
High-end 5,534 5,832 6,130 6,428 6,973 7,651 8,163

compute infrastructures, such as clusters and data centers. It was estimated that energy

consumption by IT infrastructures has risen by 56% from 2005 to 2010, and in 2010 ac-

counted to be between 1.1% and 1.5% of the global electricity use [70]. Apart from high

operating costs, this results in substantial carbon dioxide (CO2) emissions, which were

estimated to be 2% of the global emissions [52].

Energy consumption is not only determined by hardware efficiency, but also by the

resource management system deployed on the infrastructure and the efficiency of appli-

cations running in the system. The interdependence of different levels of computing sys-

tems in regard to energy consumption is shown in Figure 2.1. Energy efficiency impacts

end-users in terms of resource usage costs, which are typically determined by the Total

Cost of Ownership (TCO) incurred by the resource provider. Higher power consump-

tion results not only in boosted electricity bills but also in additional requirements to the

cooling system and power delivery infrastructure, i.e., Uninterruptible Power Supplies

(UPS), Power Distribution Units (PDU), and so on.

With the growth of the density of computer components, the cooling problem be-

comes crucial, as more heat has to be dissipated for a square meter. The problem is

especially important for 1U and blade servers. These types of servers are the most dif-

ficult to cool because of the high density of components, and thus, the lack of space for

the air flow. Blade servers bring the advantage of higher computational power in less

rack space. For example, 60 blade servers can be installed into a standard 42U rack [83].

However, such a system requires more than 4000 W to supply the resources and cooling

system. This is significantly higher compared with the same rack filled by 1U servers con-

suming 2500 W. Moreover, peak power consumption tends to limit further performance

improvements due to constraints of the power distribution facilities. For example, to

power a server rack in a typical data center, it is necessary to provide about 60 A [102].

Even if the cooling problem can be addressed in future systems, it is likely that delivering

2.1 Introduction 15

Customer

Users Brokers Enterprises

Internet

Scientific Business

Application domains

Commercial

resource

providers

Private

computing

infrastructures

Public and

private

Clouds

Computing environments

Servers,

network

interconnect

Cooling

systems

UPS, PDU,

power

generators

Physical resources

Power / energy

aware resource

management

system

Electricity

bills

Power budget

(e.g. capacity

limits)

CO2

emissions

Power / energy

consumption

Efficiency of

applications

Efficiency of

hardware

Figure 2.1: Energy consumption at different levels in computing systems

current in such data centers will reach the power delivery limits.

Apart from the overwhelming operating costs and the total cost of acquisition (TCA),

another rising concern is the environmental impact in terms of carbon dioxide (CO2)

emissions caused by high energy consumption. Therefore, the reduction of power and

energy consumption has become a first-order objective in the design of modern comput-

ing systems. The roots of energy-efficient computing, or Green IT, practices can be traced

back to 1992, when the U.S. Environmental Protection Agency launched Energy Star, a

voluntary labeling program designed to identify and promote energy-efficient products

to reduce the greenhouse gas emissions. Computers and monitors were the first labeled

products. This led to the widespread adoption of the sleep mode in electronic devices.

At that time, the term “green computing” was introduced to refer to energy-efficient

personal computers [103]. At the same time, the Swedish confederation of professional

employees has developed the TCO certification program – a series of end-user and en-

vironmental requirements for IT equipment including video adapters, monitors, key-

boards, computers, peripherals, IT systems, and even mobile phones. Later, this pro-

gram has been extended to include requirements on ergonomics, magnetic and electrical

16 A Taxonomy and Survey of Energy-Efficient Computing Systems

field emission levels, energy consumption, noise level, and use of hazardous compounds

in hardware. The Energy Star program was revised in October 2006 to include stricter

efficiency requirements for computer equipment a tiered ranking system.

There are a number of industry initiatives aiming at the development of standardized

methods and techniques for the reduction of energy consumption and carbon dioxide

emissions in computing environments. They include Climate Savers Computing Ini-

tiative (CSCI), Green Computing Impact Organization, Inc. (GCIO), Green Electronics

Council, The Green Grid, FIT4Green, ECO2Clouds, Eco4Cloud, International Profes-

sional Practice Partnership (IP3), with the membership of large companies, such as AMD,

Dell, HP, IBM, Intel, Microsoft, Sun Microsystems, and VMware.

Energy-efficient resource management has been first introduced in the context of

battery-powered mobile devices, where energy consumption has to be reduced to im-

prove the battery lifetime. Although techniques developed for mobile devices can be

applied or adapted for servers and data centers, this kind of systems requires specific

methods. This chapter discusses various ways of reducing power and energy consump-

tion in computing systems, as well as recent research that deals with power and energy

efficiency at the hardware and firmware, Operating System (OS), virtualization, and data

center levels. The objectives of this chapter is to give an overview of the recent research

advancements in energy-efficient computing, classify the approaches, discuss open re-

search challenges, and position the current thesis within the research area.

The reminder of this chapter is organized as follows. In the next section, power and

energy models are introduced. Section 2.3 discusses problems caused by high power

and energy consumption. Sections 2.4.1-2.4.4 present the taxonomy and survey of the

research in energy-efficient design of computing systems. The chapter is concluded with

the positioning of the current thesis within the research area in Section 2.5, followed by a

summary and directions for future work in Section 2.6.

2.2 Power and Energy Models

To understand power and energy management mechanisms, it is essential to clarify the

terminology. Electric current is the flow of electric charge measured in amperes. Am-

2.2 Power and Energy Models 17

peres define the amount of electric charge transferred by a circuit per second. Power and

energy can be defined in terms of work that a system performs. Power is the rate at which

the system performs the work, while energy is the total amount of work performed over

a period of time. Power and energy are measured in watts (W) and watt-hour (Wh), re-

spectively. Work is done at the rate of 1 W when 1 A is transferred through a potential

difference of 1 V. A kilowatt-hour (kWh) is the amount of energy equivalent to a power

of 1 kW (1000 W) being applied for one hour. Formally, power and energy can be defined

as shown in (2.1).

P =
W
T

,

E = PT,
(2.1)

where P is power, T is a period of time, W is the total work performed during that period

of time, and E is energy. The difference between power and energy is very important

since a reduction of power consumption does not always reduce the consumed energy.

For example, power consumption can be decreased by lowering the CPU performance.

However, in this case, a program may take longer to complete its execution consuming

the same amount of energy. On one hand, a reduction of peak power consumption results

in decreased costs of the infrastructure provisioning, such as costs associated with capac-

ities of UPS, PDU, power generators, cooling system, and power distribution equipment.

On the other hand, decreased energy consumption reduces the electricity bills.

Energy consumption can be reduced temporarily via Dynamic Power Management

(DPM) techniques, or permanently applying Static Power Management (SPM). DPM uti-

lizes the knowledge of the real-time resource usage and application workloads to opti-

mize energy consumption. However, it does not necessarily decrease peak power con-

sumption. In contrast, SPM prescribes the usage of highly efficient hardware compo-

nents, such as CPUs, disk storage, network devices, UPS, and power supplies. These

structural changes usually reduce both energy and peak power consumption.

2.2.1 Static and Dynamic Power Consumption

The major part of power consumption in complementary metal-oxide-semiconductor

(CMOS) circuits comprises static and dynamic power. Static power consumption, or

18 A Taxonomy and Survey of Energy-Efficient Computing Systems

leakage power, is caused by leakage currents that are present in any active circuit, in-

dependently of clock rates and usage scenarios. This static power is mainly determined

by the type of transistors and process technology. The reduction of static power requires

improvements of the low-level system design; therefore, it is not within the scope of this

chapter. More details regarding possible ways to improve energy efficiency at this level

can be found in the survey by Venkatachalam and Franz [117].

Dynamic power consumption is created by circuit activity (i.e., transistor switches,

changes of values in registers, etc.) and depends mainly on a specific usage scenario,

clock rates, and I/O activity. The sources of dynamic power consumption are the short-

circuit current and switched capacitance. Short-circuit current causes only 10-15% of the

total power consumption and so far no way has been found to reduce this value without

compromising the performance. Switched capacitance is the primary source of dynamic

power consumption; therefore, dynamic power consumption can be defined as (2.2).

Pd = aCV2 f , (2.2)

where a is the switching activity, C is the physical capacitance, V is the supply voltage,

and f is the clock frequency. The values of switching activity and capacitance are deter-

mined by the low-level system design. The combined reduction of the supply voltage and

clock frequency lies in the roots of the widely adopted DPM technique called Dynamic

Voltage and Frequency Scaling (DVFS). The main idea of this technique is to intentionally

scale down the CPU performance, when it is not fully utilized, by decreasing the voltage

and frequency of the CPU. In the ideal case, this should result in a cubic reduction of dy-

namic power consumption. DVFS is supported by most modern CPUs including mobile,

desktop, and server systems. This technique is discussed in detail in Section 2.4.1.

2.2.2 Sources of Power Consumption

According to data provided by Intel Labs [83], the main part of power consumed by a

server is accounted for the CPU, followed by the memory and losses due to the power

supply inefficiency (Figure 2.2). The data show that the CPU no longer dominates power

consumption by a server. This resulted from the continuous improvements of the CPU

power efficiency combined with power-saving techniques (e.g., DVFS) that enable active

2.2 Power and Energy Models 19

CPU quadcore

Memory

(8W x 8)

PSU Efficiency

Loss

Disk (12W x 1)

PCI Slots

(25W x 2)

Motherboard

Fan (10W x 1)

NIC (4W x 1)

Figure 2.2: Power consumption by server components [83]

low-power modes. In these modes, a CPU consumes a fraction of the total power, while

preserving the ability to execute programs. As a result, current desktop and server CPUs

can consume less than 30% of their peak power in low-activity modes, leading to dynamic

power ranges of more than 70% of the peak power [13].

In contrast, dynamic power ranges of all the other server components are much nar-

rower: less than 50% for Dynamic Random Access Memory (DRAM), 25% for disk drives,

15% for network switches, and negligible for other components [44]. The reason is that

only the CPU supports active low-power modes, whereas other components can only be

completely or partially switched off. However, the performance overhead of a transition

between the active and inactive modes is substantial. For example, a disk drive in the

deep-sleep mode consumes almost no power, but a transition to the active mode incurs a

latency 1000 times higher than the regular access latency. Power inefficiency of the server

components in the idle state leads to a narrow overall dynamic power range of 30%: even

if a server is completely idle, it still consumes more than 70% of its peak power.

Another reason for the reduction of the fraction of power consumed by the CPU rel-

atively to the whole system is the adoption of multi-core architectures. Multi-core pro-

cessors are substantially more efficient than conventional single-core processors. For ex-

ample, servers built with recent Quad-core Intel Xeon processor can deliver 1.8 teraflops

at the peak performance, using less than 10 kW of power. To compare with, Pentium

processors in 1998 would consume about 800 kW to achieve the same performance [83].

The adoption of multi-core CPUs along with the increasing use of virtualization and

20 A Taxonomy and Survey of Energy-Efficient Computing Systems

data-intensive applications resulted in the growing amount of memory in servers. In con-

trast to the CPU, DRAM has a narrower dynamic power range, and power consumption

by memory chips is increasing. Memory is packaged in dual in-line memory modules

(DIMMs), and power consumption by these modules varies from 5 to 21 W per DIMM

for the DDR3 and fully buffered DIMM (FB-DIMM) memory technologies [83]. Power

consumption by a server with eight 1 GB DIMMs is about 80 W. Modern large servers

currently use 32 or 64 DIMMs, which leads to power consumption by the memory be-

ing higher than by the CPUs. Most of power management techniques are focused on

the CPU; however, the constantly increasing frequency and capacity of memory chips

in addition to the problem of high energy consumption raise the cooling requirements.

These facts make memory one of the most important server components that has to be

efficiently managed.

Power supplies transform alternating current (AC) into direct current (DC) to feed

the server components. This transformation leads to significant power losses due to the

inefficiency of the current technology. The efficiency of power supplies depends on their

load. They achieve the highest efficiency at loads within the range of 50-75%. However,

most data centers normally create a load of 10-15% wasting the majority of the consumed

electricity and leading to the average power losses of 60-80%. As a result, power supplies

consume at least 2% of the US electricity production [83]. More efficient power supply

design can save more than a half of energy consumption.

The problem of the low average utilization also applies to disk storage, especially

when disks are attached to servers in a data center. However, this can be addressed by

moving the disks to an external centralized storage array. Nevertheless, intelligent poli-

cies are required to efficiently manage a storage system containing thousands of disks.

2.2.3 Modeling Power Consumption

To develop new policies for DPM and understand their impact, it is necessary to create a

model of dynamic power consumption. Such a model should be able to predict the actual

value of power consumption by a system based on some run-time system characteristics.

One of the ways to accomplish this is to utilize power monitoring capabilities that are

built into modern computer servers. These capabilities allow the monitoring of power

2.2 Power and Energy Models 21

consumption by a server in real-time and collecting accurate statistics of the power usage.

Based on the data, it is possible to derive a power consumption model for a particular

system. However, this approach requires collecting data for every target system.

Fan et al. [44] found a strong relationship between the CPU utilization and total power

consumption by a server. The idea behind the proposed model is that power consump-

tion by a server grows linearly with the growth of the CPU utilization from the value of

power consumption in the idle state up to the power consumed when the server is fully

utilized. This relationship can be expressed as shown in (2.3).

P(u) = Pidle + (Pbusy − Pidle)u, (2.3)

where P is the estimated power consumption, Pidle is power consumption by an idle

server, Pbusy is the power consumed by the server when it is fully utilized, and u is the

current CPU utilization. The authors have also proposed an empirical nonlinear model

given in (2.4):

P(u) = Pidle + (Pbusy − Pidle)(2u− ur), (2.4)

where r is a calibration parameter that minimizes the square error and has to be obtained

experimentally. For each class of machines of interest, a set of calibration experiments

must be performed to fine tune the model.

Extensive experiments on several thousand nodes under different types of workloads

(Figure 2.3) showed that the derived models accurately predict power consumption by

server systems with the error below 5% for the linear model and 1% for the empirical

model. The calibration parameter r was set to 1.4 to obtain the presented results. These

precise results can be explained by the fact that the CPU is the main power consumer

in servers and, in contrast to the CPU, other system components (e.g., I/O, memory)

have narrow dynamic power ranges or their activities correlate with the CPU activity.

For example, current server processors can reduce power consumption up to 70% by

switching to low-power-performance modes [13]. However, dynamic power ranges of

other components are much narrower: < 50% for DRAM, 25% for disk drives, and 15%

for network switches.

22 A Taxonomy and Survey of Energy-Efficient Computing Systems

Figure 2.3: The relation between power consumption and CPU utilization of a server [44]

The presented accurate and simple power models enable easy prediction of power

consumption by a server supplied with the CPU utilization data and power consump-

tion values at the idle and maximum CPU utilization states. Therefore, it is especially

important that the increasing number of server manufactures publish actual power con-

sumption figures for their systems at different utilization levels [22]. This is driven by

the adoption of the ASHRAE Thermal Guideline [7] that recommends providing power

ratings for the minimum, typical and full CPU utilization.

Dhiman et al. [41] found that although regression models based on just the CPU uti-

lization are able to provide reasonable prediction accuracy for CPU-intensive workloads,

they tend to be considerably inaccurate for prediction of power consumption caused

by I/O- and memory-intensive applications. The authors proposed a power modeling

methodology based on Gaussian mixture models that predicts power consumption by a

physical machine running multiple virtual machine (VM) instances. To perform predic-

tions, in addition to the CPU utilization, the model relies on run-time workload charac-

teristics such as the number of instructions per cycle (IPC) and the number of memory

accesses per cycle (MPC).

2.3 Problems of High Power and Energy Consumption 23

The proposed approach requires a training phase to perceive the relationship between

the workload metrics and power consumption. The authors evaluated the proposed

model via experimental studies involving different workload types. The obtained exper-

imental results showed that the model predicts power consumption with high accuracy

(< 10% prediction error), which is consistent for all the tested workloads. The proposed

model outperforms regression models by a factor of 5 for specific workload types. This

proves the importance of architectural metrics like IPC and MPC as compliments to the

CPU utilization for power consumption prediction.

2.3 Problems of High Power and Energy Consumption

Energy consumption by computing facilities raises various monetary, environmental,

and system performance concerns. A recent study on power consumption of server

farms [69] showed that in 2005 the electricity use by servers worldwide – including their

associated cooling and auxiliary equipment – cost 7.2 billion dollars. The study also

indicates that the electricity consumption in that year had doubled compared to the con-

sumption in 2000. Clearly, there are environmental issues with the generation of electric-

ity. The number of transistors integrated into today’s Intel Itanium 2 processor reaches

nearly 1 billion. If the transistor density continues to growth, the heat (per cm2) pro-

duced by future processors would exceed that of the surface of the Sun [68]. The scope

of energy-efficient design is not limited to main computing components (e.g., processors,

storage devices, and visualization facilities), but can expand into a much larger range of

resources associated with computing facilities including auxiliary equipment, water used

for cooling, and even the floor space occupied by the resources.

While recent advances in hardware technologies including low-power processors,

solid state drives, and energy-efficient monitors have alleviated the energy consumption

issue to a certain degree, a series of software approaches have significantly contributed

to the improvement of energy efficiency. These two approaches (hardware and software)

should be seen as complementary rather than competitive. User awareness is another

non-negligible factor that should be taken into account when discussing Green IT. User

awareness and behavior in general considerably affect computing workload and resource

24 A Taxonomy and Survey of Energy-Efficient Computing Systems

usage patterns. This, in turn, has a direct relationship with energy consumption of not

only core computing resources but also auxiliary equipment, such as cooling/air con-

ditioning systems. For example, a computer program developed without paying much

attention to its energy efficiency may lead to excessive energy consumption and may con-

tribute to higher heat emission resulting in increases in the energy consumed for cooling.

Traditionally, power- and energy-efficient resource management techniques were ap-

plied to mobile devices. It was dictated by the fact that such devices are usually battery-

powered, and it is essential to apply power and energy management to improve their

lifetime. However, due to the continuous growth of power and energy consumption by

servers and data centers, the focus of power and energy management techniques has

been switched to such systems. Even though the problems caused by high power and

energy consumption are interconnected, they have their specifics and have to be consid-

ered separately. The difference is that peak power consumption determines the cost of the

infrastructure required to maintain the system operation, whereas energy consumption

accounts for electricity bills. These two issues are discussed in detail in the next sections.

2.3.1 High Power Consumption

The main reason of power inefficiency in data centers is the low average utilization of re-

sources. To show this, the workload trace data provided as a part of the CoMon project1,

a monitoring infrastructure for PlanetLab2, were analyzed. The data on the CPU utiliza-

tion by more than a thousand servers located at more than 500 places around the world

were used in the analysis. The data were collected in 5 minute intervals during the period

from 10 to 19 May 2010. The distribution of the CPU utilization data over 10 days along

with the characteristics of the distribution are presented in Figure 2.4.

The data confirm the observation made by Barroso and Holzle [13]: the average CPU

utilization is below 50%. The mean value of the CPU utilization is 36.44% with 95% con-

fidence interval from 36.40% to 36.47%. The main run-time reasons of under-utilization

in data centers are variability of the workload and statistical effects. Modern service

applications cannot be kept on fully utilized servers, as even non-significant workload

1The CoMon project. http://comon.cs.princeton.edu/
2The PlanetLab platform. http://www.planet-lab.org/

http://comon.cs.princeton.edu/
http://www.planet-lab.org/

2.3 Problems of High Power and Energy Consumption 25

988470564228140

CPU utilization

Median

Mean

35.032.530.027.525.022.520.0

1st Quartile 5.000

Median 21.000

3rd Quartile 64.000

Maximum 100.000

36.401 36.471

21.000 21.000

36.743 36.792

A-Squared 290412.05

P-Value < 0.005

Mean 36.436

StDev 36.767

Variance 1351.839

Skewness 0.745091

Kurtosis -0.995180

N 4270388

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

95% Confidence Intervals

Figure 2.4: The CPU utilization from the PlanetLab nodes over a period of 10 days

fluctuation would lead to performance degradation and failing to provide the expected

Quality of Service (QoS). However, servers in a non-virtualized data center are unlikely

to be completely idle because of background tasks (e.g., incremental backups), or dis-

tributed data bases / file systems. Data distribution helps to tackle load-balancing prob-

lems and improves fault tolerance. Furthermore, despite the fact that the resources have

to be provisioned to handle theoretical peak loads, it is very unlikely that all the servers

of a large-scale data centers will be fully utilized simultaneously.

Systems where the average utilization of resources is less than 50% represent huge

inefficiency, as most of the time only a half of the resources are actually in use. Although

the resources on average are utilized by less than 50%, the infrastructure has to be built to

handle the potential peak load, which rarely occurs in practice. In such systems, the cost

of the over-provisioned capacity is very significant and includes expenses on the extra

capacity of cooling systems, PDU, generators, power delivery facilities, UPS, and so on.

The lower the average resource utilization in a data center, the more expensive the data

center becomes as a part of the TCO, as it has to support peak loads and meet the require-

26 A Taxonomy and Survey of Energy-Efficient Computing Systems

ments of handling peak power consumption [44]. Moreover, peak power consumption

can constrain the further growth of power density, as power requirements already reach

60 A for a server rack [102]. If this tendency continues, further performance improve-

ments can be bounded by the power delivery capabilities.

Another problem of high power consumption and increasing density of server com-

ponents (i.e., 1U, blade servers) is the heat dissipation. Much of the electrical power con-

sumed by computing resources gets turned into heat. The amount of heat produced by

an integrated circuit depends on how efficient the component design is, and the voltage

and frequency at which the component operates. The heat generated by the resources

has to be dissipated to keep them within their safe thermal state. Overheating of the

components can lead to a decrease of their lifetime and high error-proneness.

Moreover, power is required to feed the cooling system operation. Although mod-

ern cooling systems are more efficient, just a few years ago for each watt of power con-

sumed by computing resources, an additional 0.5-1 W was required for the cooling sys-

tem [102]. For example, in 2004 to dissipate 1 W consumed by a high-performance com-

puting (HPC) system at the Lawrence Livermore National Laboratory (LLNL), 0.7 W of

additional power is needed for the cooling system [95]. Moreover, modern high-density

servers, such as 1U and blade servers, further complicate cooling because of the lack of

space for airflow within the packages. These facts illustrate the concerns about the effi-

ciency and real-time adaptation of the cooling system operation.

2.3.2 High Energy Consumption

A way to address high power consumption is the minimization of the peak power re-

quired to feed a completely utilized system. In contrast, energy consumption is defined

by the average power consumption over a period of time. Therefore, the actual energy

consumption by a data center does not directly determine the cost of the infrastructure.

However, it is reflected in the cost of electricity consumed by the system, which is the

main component of data center operating costs. Furthermore, in most data centers, 50%

of the consumed energy never reaches the computing resources: it is consumed by the

cooling facilities or dissipated in conversions within the UPS and PDU systems. With the

current tendency of the continuously growing energy consumption and costs associated

2.4 The State of the Art in Energy-Efficient Computing Systems 27

with it, the point when operating costs exceed the cost of computing resources them-

selves in few years can be reached soon. Therefore, it is crucial to develop and apply

energy-efficient resource management strategies in data centers.

In addition to high operating costs, another problem caused by the growing energy

consumption is high CO2 emissions, which contribute to the global warming. According

to Gartner [52] in 2007, the Information and Communications Technology (ICT) industry

was responsible for about 2% of global CO2 emissions, which is equivalent to the avia-

tion industry. According to the estimation by the U.S. Environmental Protection Agency

(EPA), the current efficiency trends led to the increase of annual CO2 emissions from 42.8

million metric tons (MMTCO2) in 2007 to 67.9 MMTCO2 in 2011. Intense media cover-

age has raised the awareness of people around the climate change and greenhouse effect.

More and more customers start to consider the “green” aspect in selecting products and

services. Besides the environmental concern, companies have begun to face business

risks caused by being non-environment friendly. The reduction of CO2 footprints is an

important problem that has to be addressed in order to facilitate further advancements

and proliferation of computing systems.

2.4 The State of the Art in Energy-Efficient Computing Systems

A large volume of research has been done in the area of power and energy-efficient re-

source management in computing systems. As power and energy management tech-

niques are closely connected, in this chapter they are referred to as power management.

As shown in Figure 2.5, at the high-level, power management techniques can be divided

into static and dynamic. From the hardware point of view, SPM contains all the opti-

mization methods that are applied at the design time at the circuit, logic, architectural,

and system levels [40, 117]. The Circuit level optimization is focused on the reduction of

the switching activity power of individual logic gates and transistor level combinational

circuits by the application of complex gate design and transistor sizing. The optimization

at the logic level is aimed at the switching activity power of logic-level combinational and

sequential circuits. Architecture level methods include the analysis of system design and

subsequent incorporation of power optimization techniques into it. In other words, this

28 A Taxonomy and Survey of Energy-Efficient Computing Systems

Power Management Techniques

Static Power Management (SPM) Dynamic Power Management (DPM)

Hardware Level Software Level

Circuit Level Logic Level Architectural Level

Hardware Level Software Level

Single Server Multiple Servers, Data

Centers and Clouds

OS Level Virtualization Level

Figure 2.5: A high-level taxonomy of power and energy management

kind of optimization refers to the process of efficient mapping of a high-level problem

specification onto a register-transfer level design.

Apart from the optimization of the hardware-level system design, it is extremely im-

portant to carefully consider the implementation of programs that are to be executed on

the system. Even with perfectly designed hardware, poor software design can lead to

dramatic performance and power losses. However, it is impractical or impossible to ana-

lyze power consumption caused by large programs at the operator level, as not only the

processes of code generation and compilation, but also the order of instructions can have

an impact on power consumption [53, 113, 114]. Therefore, indirect estimation methods

can be applied. For example, it has been shown that faster code almost always implies

lower energy consumption [88, 115]. Since generic methods for synthesizing optimal al-

gorithms are not currently available, algorithm analysis is an important research area.

This chapter focuses on DPM techniques that include methods and strategies for run-

time adaptation of the system behavior according to the current resource requirements

or any other dynamic characteristic of the system state. A major assumption enabling

DPM is that systems experience variable workloads during their operation allowing the

dynamic adjustment of power states according to the current performance requirements.

Another often made assumption is that the workload can be predicted to a certain degree,

which enables the inference of future system states and taking the appropriate actions.

As shown in Figure 2.5, DPM techniques can be distinguished by the level at which

they are applied: hardware or software. Hardware DPM varies for different hardware

components, but usually can be classified as Dynamic Performance Scaling (DPS), such as

2.4 The State of the Art in Energy-Efficient Computing Systems 29

DVFS, and partial or complete Dynamic Component Deactivation (DCD) during periods

of inactivity. In contrast, software DPM techniques utilize an interface to the system’s

power management capabilities and according to their policies apply hardware DPM.

The following subsections 2.4.1-2.4.4 detail and survey DPM approaches proposed in the

literature focusing on the hardware, OS, virtualization, and data center levels.

The following sections detail different levels of the presented taxonomy: Section 5

discusses power optimization techniques that can be applied at the hardware level. The

approaches proposed for power management at the OS level are surveyed in Section 6,

followed by the discussion of modern virtualization technologies and their impact on

power-aware resource management in Section 7, and the recent approaches applied at

the data center level in Section 8.

2.4.1 Hardware and Firmware Level

As shown in Figure 2.5, DPM techniques applied at the hardware and firmware level can

be broadly divided into two categories: Dynamic Component Deactivation (DCD) and

Dynamic Performance Scaling (DPS). DCD techniques are built upon the idea of clock

gating of parts of an electronic component or complete disabling the components during

periods of inactivity. In contrast, instead of completely deactivating system components,

DPS techniques dynamically adjust the performance of the components according to the

real-time demands.

Dynamic Component Deactivation

Computer components that do not support performance scaling and can only be deacti-

vated require techniques that leverage the workload variability and disable the compo-

nents when they are idle. The problem is trivial in the case of a negligible power and

performance overhead of transitions between power states. However, in reality such

transitions lead to not only delays, which can degrade performance of the system, but

also to additional power draw caused by the reinitialization of the components. For ex-

ample, if entering a low-power state requires a shutdown of the power supply, returning

to the active state will cause a delay consisting of turning on and stabilizing the power

30 A Taxonomy and Survey of Energy-Efficient Computing Systems

supply and clock, reinitializing the system, and restoring the context [20].

In the case of non-negligible transitions, efficient power management turns into a

complex online optimization problem. A transition to low-power state is worthwhile

only if the period of inactivity is longer than the aggregated delay of transitions from and

to the active state, and the saved power is higher than the power required to reinitialize

the component. In most real-world systems, there is a limited or no knowledge of the

future workload. Therefore, a prediction of an effective transition has to be done based

on an analysis of the historical data or some other model. A large volume of research has

been done on the development of efficient methods for solving this problem [2, 20]. As

shown in Figure 2.5, DCD techniques can be divided into predictive and stochastic.

Predictive techniques are based on the correlation between the past history of the

system behavior and its near future. The efficiency of such techniques is highly depen-

dent on the actual correlation between past and future events and the quality of tuning

for a particular workload type. A non-ideal prediction can result in an over- or under-

prediction. An over-prediction means that the actual idle period is shorter than the pre-

dicted, leading to a performance penalty. On the other hand, an under-prediction means

that the actual idle period is longer than the predicted. This case does not have any

influence on the performance; however, it results in reduced energy savings.

Predictive techniques can be further split into static and adaptive. Static techniques

utilize some threshold of a real-time execution parameter to make predictions of idle

periods. The simplest policy is called fixed timeout. The idea is to define the length of

time, after which a period of inactivity is considered to be long enough to transition to

a low-power state. The reactivation of the component is initiated once the first request

to the component is received. The policy has two advantages: it can be applied to any

workload type, and over- and under-predictions can be controlled by adjusting the value

of the timeout threshold. However, the disadvantages are obvious: the policy requires

the tuning of the threshold value for each workload; it always leads to a performance loss

on the activation; and the energy consumed from the beginning of an idle period until

the timeout is wasted. Two ways to overcome the drawbacks of the fixed timeout policy

were proposed: predictive shutdown and predictive wake-up.

Predictive shutdown policies address the problem of the missed opportunity to save

2.4 The State of the Art in Energy-Efficient Computing Systems 31

energy before the timeout. These policies utilize the assumption that previous periods of

inactivity are highly correlated with the nearest future. According to an analysis of the

historical information, they predict the length of the next idle period before it actually

begins. These policies are highly dependent on the actual workload and the strength of

correlation between past and future events. History-based predictors were shown to be

more efficient and less safe than timeouts [109]. Predictive wake-up techniques aim to

eliminate the performance penalty on the reactivation. A transition to the active state is

predicted based on the past history and performed before an actual user request [61]. This

technique increases energy consumption but reduces performance losses on wake-ups.

All the mentioned static techniques are inefficient in cases when the system workload

is unknown or can vary over time. To address this problem, adaptive predictive tech-

niques have been introduced. The basic idea is to dynamically adjust the parameters,

which are fixed for the static techniques, according to the prediction quality that they

have provided in the past. For example, the timeout value can be increased if for the last

several intervals the value led to over-predictions. Another way to implement adaptation

is to maintain a list of possible values of the parameter of interest and assign weights to

the values according to their efficiency at previous intervals. The actual value is obtained

as a weighted average over all the values in the list. In general, adaptive techniques are

more efficient than static when the type of the workload is unknown a priori. Several

adaptive techniques are discussed in the paper by Douglis et al. [42].

Another way to deal with non-deterministic system behavior is to formulate the prob-

lem as stochastic optimization, which requires building an appropriate probabilistic model

of the system. For instance, in such a model, system requests and power state transitions

are represented as stochastic processes and can be modeled as Markov processes. At any

moment, a request arrives with some probability and a device power state transition oc-

curs with another probability obtained by solving the stochastic optimization problem. It

is important to note that the results, obtained using the stochastic approach, are expected

values, and there is no guarantee that the solution will be optimal for a particular case.

Moreover, constructing a stochastic model of the system in practice may not be straight-

forward. If the model is inaccurate, the policies may not provide the efficient control.

32 A Taxonomy and Survey of Energy-Efficient Computing Systems

Dynamic Performance Scaling

DPS includes power management techniques that can be applied to computer compo-

nents supporting dynamic adjustment of their performance proportionally to power con-

sumption. In addition to complete deactivation, some components, such as the CPU,

allow gradual reductions or increases of the clock frequency along with adjustments of

the supply voltage. This approach is useful when the resource is not fully utilized. The

widely adopted DVFS technique is an example of DPS.

Although the CPU frequency can be adjusted independently, frequency scaling by

itself is rarely worthwhile as a way to conserve switching power. Most power savings

come from dynamic voltage scaling in addition to frequency scaling because of the V2

component and the fact that modern CPUs are strongly optimized for low voltage states.

Dynamic voltage scaling is usually used in conjunction with frequency scaling, as the

frequency that a chip may run at is related to the operating voltage. The efficiency of

some electrical components, such as voltage regulators, decreases with a temperature

increase, so the power usage may increase with higher temperature.

Since increasing power use may raise the temperature, increases in voltage or fre-

quency may raise the system power demand even faster than the CMOS formula indi-

cates, and vice versa. DVFS reduces the number of instructions a processor can issue

in a given amount of time, thus reducing the performance. This, in turn, increases the

run-time of program segments that are significantly CPU bound. Hence, it creates a chal-

lenge of providing the optimal energy/performance control, which has been extensively

investigated by scientists in recent years.

Although the application of DVFS may seem to be straightforward, real-world sys-

tems raise many complexities that have to be taken into account. First of all, due to com-

plex architectures of modern CPUs (i.e., pipelining, multilevel cache, etc.), the prediction

of the required CPU clock frequency that will meet the application performance require-

ments is not trivial. Another problem is that in contrast to the theory, power consumption

by a CPU may not be quadratic to its supply voltage. For example, some architectures

may include several supply voltages that power different parts of the chip, and even if

one of them is reduced, the overall power consumption will be dominated by the larger

supply voltage [13].

2.4 The State of the Art in Energy-Efficient Computing Systems 33

Moreover, the execution time of a program running on the CPU may not be inversely

proportional to the clock frequency, and DVFS may result in non-linearities in the execu-

tion time [26]. For example, if a program is memory or I/O bounded, the CPU speed will

not have a dramatic effect on the execution time. Furthermore, slowing down the CPU

may lead to changes in the order, in which the tasks are scheduled [117]. In summary,

DVFS can provide substantial energy savings; however, it has to be applied carefully, as

the result may vary significantly for different hardware and software systems.

Approaches that apply DVFS to reduce energy consumption by a system can be di-

vided into interval-based, inter- and intratask [26]. Interval-based algorithms are similar

to adaptive predictive DCD approaches in that they also utilize the knowledge of the

past periods of CPU activity [56, 125]. Depending on the CPU utilization during previ-

ous intervals, they predict the utilization in the near future and appropriately adjust the

voltage and clock frequency. Wierman et al. [128] and Andrew et al. [5] conducted analyt-

ical studies of speed scaling algorithms in processor sharing systems. They proved that

no online energy-proportional speed scaling algorithm can be better than 2-competitive

compared with an optimal offline algorithm. Moreover, they found that sophistication

in the design of speed scaling algorithms does not provide significant performance im-

provements; however, it dramatically improves robustness to errors in the estimation of

workload parameters.

Intertask approaches instead of relying on coarse-grained data on the CPU utilization

distinguish different tasks running in the system and assign them different speeds [48,

126]. The problem is easily solvable if the workload is known a priori or constant over

the whole period of task execution. However, the problem becomes non-trivial when

the workload is irregular. In contrast to intertask, intratask approaches leverage fine-

grained information about the structure of programs and adjust the processor frequency

and voltage within the tasks [73, 79]. Such policies can be implemented by splitting a

program execution into time slots and assigning different CPU speeds to each of them.

Another way to apply such policies is to implement them at the compiler level. This

kind of approaches utilizes the compiler’s knowledge of the program structure to make

inferences about time periods suitable for clock frequency reduction.

34 A Taxonomy and Survey of Energy-Efficient Computing Systems

Advanced Configuration and Power Interface

Many DPM algorithms, such as timeout-based as well as other predictive and stochastic

policies, can be implemented in hardware as a part of an electronic circuit. However,

a hardware implementation highly complicates the modification and reconfiguration of

the policies. Therefore, there are strong reasons to shift the implementation to the soft-

ware level. In 1996 to address this problem, Intel, Microsoft, and Toshiba have published

the first version of the Advanced Configuration and Power Interface (ACPI) specifica-

tion – an open standard defining a unified OS-centric device configuration and power

management interface. In contrast to previous basic input/output system (BIOS) cen-

tral, firmware-based, and platform-specific power management systems, ACPI describes

platform-independent interfaces for hardware discovery, configuration, power manage-

ment, and monitoring.

ACPI is an attempt to unify and improve the existing power and configuration stan-

dards for hardware devices. The standard brings DPM into the OS control and requires

an ACPI-compatible OS to take over the system and have the exclusive control of all as-

pects of power management and device configuration. The main goals of ACPI are to

enable all computing systems to implement DPM capabilities, and simplify and acceler-

ate the development of power-managed systems. It is important to note that ACPI does

not impose any constraints on particular power management policies, but provides an

interface that can be used by software developers to leverage the flexibility in adjusting

the system’s power states.

ACPI defines a number of power states that can be enabled in the system at run-

time. The most relevant states in the context of DPM are C-states and P-states. C-states

are the CPU power states C0-C3 denoting the Operating State, Halt, Stop-Clock, and Sleep

Mode respectively. In addition, while the processor operates, it can be in one of several

power-performance states (P-state). Each of these states designates a particular combi-

nation of DVFS settings. P-states are implementation-dependent, but P0 is always the

highest performance state, with P1 to Pn being successively lower performance states, up

to an implementation-specific limit of n and no greater than 16. P-states have become

known as SpeedStep in Intel processors, PowerNow!, or Cool’n’Quiet in AMD proces-

sors, and PowerSaver in VIA processors. ACPI is widely used by OSes, middleware, and

2.4 The State of the Art in Energy-Efficient Computing Systems 35

application-level software for managing power states of the system.

The introduction of ACPI has drastically simplified software power management and

resulted in broad research studies in this area. The problem of power-efficient resource

management has been investigated in different contexts of device-specific management,

OS-level management of virtualized and non-virtualized servers, followed by multiple-

node system such as homogeneous and heterogeneous clusters, data centers, and Clouds,

as discussed in the following sections.

2.4.2 Operating System Level

This section discusses research works that deal with power-efficient resource manage-

ment in computing systems at the OS level. The taxonomy of the characteristics used to

classify the proposed approaches is presented in Figure 2.6. In particular, the proposed

solutions are classified in regard to the following characteristics:

• Application adaption – whether the system requires modifications of the application-

level software to take advantage of power management.

• System resources – whether the system focuses on optimizing a single system re-

source, such as the CPU; or multiple system resources.

• Target systems – whether the approach is general and can be applied to an arbitrary

system; or specializes on mobile devices or server hardware.

• Goal – whether the system minimizes power / energy consumption under perfor-

mance constraints; or manages a power budget, also referred to as power capping.

• Power saving techniques – DPS techniques, such as DVFS; DCD techniques; or

just making the resources idle without explicit changes in hardware power states,

which is referred to as resource throttling.

• Workload – whether the system is transparent to the application workload; or fo-

cuses on particular types of applications, such as service or HPC applications.

A classification of the reviewed research in regard to the most significant characteris-

tics is shown in Table 2.2.

36 A Taxonomy and Survey of Energy-Efficient Computing Systems

Operating system level

Application adaptation

System resources

Target systems

Goal

Power saving techniques

Workload

Yes

No

Multiple resources

Single resource

Arbitrary

Mobile systems

Servers

Minimize power / energy

consumption

Satisfy performance

constraints

DPS, e.g., DVFS

Meet target battery life

DCD

Resource throttling

Arbitrary

Service applications

HPC applications

Figure 2.6: The operating system level taxonomy

2.4 The State of the Art in Energy-Efficient Computing Systems 37

Table 2.2: Operating system level research

Project name System resources Target system Goal Power-saving

The on-demand
governor [91]

CPU Arbitrary Min power under
performance con-
straints

DVFS

ECOsystem [131,
132]

CPU, RAM, disk,
network

Mobile systems Meet the target
battery life

Resource
throttling

Nemesis OS [87] CPU, RAM, disk,
network

Mobile systems Meet the target
battery life

Resource
throttling

GRACE [104, 116] CPU, network Mobile systems Min energy under
performance con-
straints

DVFS,
resource
throttling

Linux/RK [101] CPU Servers Min energy under
performance con-
straints

DVFS

Coda/Odyssey [49] CPU, network Mobile systems Min energy
via application
degradation

Resource
throttling

PowerNap [81] CPU, RAM, disk,
network

Servers Min power, min
performance loss

DCD

Barely alive mem-
ory servers [3]

CPU, disk, net-
work

Servers Min power, min
performance loss

DCD

The On-Demand Governor (Linux Kernel)

Pallipadi and Starikovskiy [91] developed an in-kernel real-time power manager for the

Linux OS called the on-demand governor. The manager continuously monitors the CPU

utilization multiple times per second and sets a clock frequency and supply voltage pair

that corresponds to the current performance requirements keeping the CPU approxi-

mately 80% busy to handle fast changes in the workload. The goal of the on-demand

governor is to minimize the performance loss due to the reduced CPU frequency.

Modern CPU frequency scaling technologies provide an extremely low transition la-

tency allowing dynamic adjustment of power consumption and performance matching

the variable workload demand with almost negligible performance overhead. For exam-

ple, Enhanced Intel Speedstep Technology enables frequency switching with the latency

as low as 10 ms. To various performance requirements, the on-demand governor can be

tuned via the specification of the rate, at which the CPU utilization is checked, and the

value of the upper utilization threshold, which is by default set to 80%.

The on-demand governor effectively handles multiprocessor SMP systems as well as

38 A Taxonomy and Survey of Energy-Efficient Computing Systems

multi-core and multi-threading CPU architectures. The governor manages each CPU in-

dividually and can manage different cores of the CPU independently if that is supported

by the hardware. In cases when different cores of the CPU are dependent on each other in

terms of frequency, they are managed together as a single entity. In order to support this

design, the on-demand governor sets the frequency of all the cores based on the highest

utilization among the cores in the group.

A number of improvements are currently under investigation, including parallel cal-

culation of the utilization and a dedicated work queue. The original governor samples

the utilization of all of the processors in the system in a centralized manner, which may

become a performance bottleneck with the increase of the number of CPU cores. To over-

come this problem, the authors proposed parallel sampling independently for each CPU.

Another improvement that can increase the performance for multiprocessor systems is to

have dedicated kernel threads for the governor, and implement sampling and frequency

adjustment in the context of a particular kernel thread.

ECOsystem

Zeng et al. [131, 132] proposed and developed ECOsystem – a framework for managing

energy as a first-class OS resource aimed at battery-powered devices. The fundamental

assumption is that applications play an important role in energy distribution opportuni-

ties that can be leveraged only at the application level. ECOsystem provides an interface

to define a target battery lifetime and application priorities used to determine the amount

of energy that will be allocated to the applications at each time frame.

The authors split OS-level energy management into two dimensions. Along the first

dimension, there is a variety of system components (e.g., CPU, memory, disk storage,

network interface) that consume energy concurrently. The other dimension spans appli-

cations that utilize the system components, and thus, cause energy consumption. To ad-

dress the problem of accounting the energy usage by both components and applications,

the authors introduced a new measurement unit called currentcy. One unit of currentcy

represents the right to consume a certain amount of energy during a fixed period of time.

When the user sets a target battery lifetime and prioritizes the applications, ECOsys-

tem transforms these data into an appropriate amount of currentcy and determines how

2.4 The State of the Art in Energy-Efficient Computing Systems 39

much currentcy should be allocated to each application at each time frame. The length of

the timeframe sufficient to achieve smooth energy allocation was empirically determined

to be 1 second. An application expends the allocated amount of currentcy by utilizing the

CPU, performing disk and memory accesses and consuming other system resources. An

application can accumulate currentcy up to a specified limit. When the expenditure of an

application exceeds the allocated amount of currentcy, none of the associated processes

are scheduled or otherwise serviced. The system is implemented as a modified Linux

kernel. The obtained experimental results showed that the proposed model can be effec-

tively used to meet different energy goals, such as achieving a target battery lifetime and

proportional energy distribution among competing applications.

Nemesis OS

Neugebauer and McAuley [87] developed the resource-centric Nemesis OS – an OS for

battery-powered devices that strives to provide consistent QoS for time-sensitive appli-

cation, such as multimedia applications. Nemesis provides fine-grained control and ac-

counting for energy usage over all the system resources: CPU, memory, disk, and net-

work bandwidth. To implement per-process resource usage accounting, the OS is ver-

tically structured: most of the system functions, protocol stacks, and device drivers are

implemented as user-level shared libraries that execute in application processes. This

design allows accurate accounting for energy consumption by individual applications.

The goal of Nemesis is to address the problem of the battery lifetime management. To

achieve a target battery lifetime specified by the user, the system relies on the cooperation

with applications. If the current energy consumption rate exceeds the threshold that

may result in failing to meet the user’s expectations, the system charges the applications

according to their current energy usage. The applications should interpret the charges as

feedback signals and adapt their behavior. The applications are supposed to limit their

resource usage according to the data provided by the OS. However, not all application

may support adaptation. In this case, the user can prioritize the applications leading to

shutting down the low-priority tasks. Nemesis supports a number of platforms including

Intel 486, Pentium, Pentium Pro and Pentium II-based PCs, DEC Alpha workstations and

evaluation boards, and StrongARM SA-110-based network computers.

40 A Taxonomy and Survey of Energy-Efficient Computing Systems

The Illinois GRACE Project

Sachs et al. [104, 116] created the Illinois GRACE project (Global Resource Adaptation

through CoopEration). They proposed saving energy through coordinated adaptation

at multiple system layers according to changes in the application demand for system

resources. The authors proposed three levels of adaptation: global, per-application, and

internal adaptation. The global adaptation takes into account all the applications running

in the system and all the system layers. At this level, the system responds to significant

changes in the workload, such as an entry or exit of an application. The per-application

adaptation considers each application in isolation and is invoked periodically to adapt all

the system resources to the application demand. The internal adaptation focuses on dif-

ferent system resources independently and adapts their states. All the adaptation levels

are coordinated in order to ensure adaptation decisions that are efficient.

The framework supports adaptations of the CPU performance (DVFS), applications

(frame rate and dithering), and soft CPU scaling (CPU time allocation). The second

generation of the framework (GRACE-2) focuses on hierarchical adaptation for mobile

multimedia systems. Moreover, it leverages the adaptation of the application behavior

depending on the resource constraints. Apart from the CPU adaptation, GRACE-2 en-

forces network bandwidth constraints and minimizes the network transmission energy.

The approach is implemented as a part of the Linux kernel and requires applications to

be able to limit their resource usage at run-time in order to leverage the per-application

adaptation technique. There is only limited support for legacy applications.

The experimental results showed that the application adaptation provides significant

benefits over the global adaptation when the network bandwidth is constrained. Energy

savings in a system with the CPU and network adaptations when adding the application

adaptation reach 32% (22% on average). Combined CPU and application adaptations

were found to result in more than additive energy savings.

Linux/RK

Rajkumar et al. [101] proposed several algorithms for the application of DVFS in real-

time systems and implemented a prototype as a modified Linux kernel, Linux/Resource

2.4 The State of the Art in Energy-Efficient Computing Systems 41

Kernel (Linux/RK). The objective is to minimize energy consumption, while maintain-

ing the performance isolation between applications. The authors proposed 4 alternative

DVFS algorithms that are automatically selected by the system when appropriate.

SystemClock Frequency Assignment (Sys-Clock) is suitable for systems where the

overhead of voltage and frequency scaling is too high to be performed at every context

switch. A single clock frequency is selected at the admission of an application and kept

constant until the set of applications running in the system changes. Priority-Monotonic

Clock Frequency Assignment (PM-Clock) is suitable for systems with a low voltage and

frequency scaling overhead allowing the adjustment of the voltage and frequency set-

tings at each context switch. Each application is assigned its own constant clock fre-

quency, which is enabled when the application is allocated a CPU time frame. Optimal

Clock Frequency Assignment (Opt-Clock) uses a non-linear optimization model to de-

termine the optimal frequency for each application that minimizes energy consumption.

Due to high computational complexity, this technique is suitable only for offline usage.

Dynamic PMClock (DPM-Clock) suits systems where the average execution time of an

application is significantly shorter than the worst case. The experimental results showed

that Sys-Clock, PM-Clock, and DPM-Clock provide up to 50% energy savings.

Coda and Odyssey

Flinn and Satyanarayanan [49] explored the problem of managing limited computing re-

sources and battery lifetime in mobile systems, as well as addressing the variability of the

network connectivity. They developed two systems: Coda and Odyssey that implement

adaptation across multiple system levels. Coda implements application-transparent adap-

tation in the context of a distributed file system, which does not require any modification

of legacy applications.

Odyssey is responsible for initiating and managing application adaptations. This

kind of adaptation allows the adjustment of resource consumption by the cost of the

output data quality, which is mostly suitable for multimedia applications. For example,

in cases of constrained resources video data can be processed or transferred over network

in a lower resolution or sound quality can be reduced.

Odyssey introduces a term fidelity that defines the degree to which the output data

42 A Taxonomy and Survey of Energy-Efficient Computing Systems

corresponds to the original quality. Each application can specify acceptable levels of fi-

delity that can be requested by Odyssey when the resource usage has to be limited. When

Odyssey notifies an application about a change of the resource availability, the applica-

tion has to adjust its fidelity to match the requested level. The evaluation results showed

that this approach allows the extension of the battery lifetime by up to 30%. A limitation

of such a system is that all the applications have to be modified in order to support the

proposed approach.

PowerNap

Meisner et al. [81] proposed an approach for power conservation in server systems based

on fast transitions between active and low-power states. The goal is to minimize power

consumption by a server while it is idle. Instead of addressing the problem of achieving

energy-proportional computing as proposed by Barroso and Holzle [13], the proposed

approach requires only two power states (sleep and fully active) for each system com-

ponent. The other requirements are fast transitions between the power states and low

power consumption in the sleep mode.

To investigate the problem, the authors collected fine-grained utilization traces of sev-

eral servers serving different workloads. According to the data, the majority of idle peri-

ods are shorter than 1 second with the mean length in the order of hundreds of millisec-

onds, whereas busy periods are even shorter falling below 100 ms for some workloads.

The main idea of the proposed approach is to leverage short idle periods that occur due

to the workload variability. To estimate the characteristics of the hardware suitable for

the proposed technique, the authors constructed a queueing model based on the charac-

teristics of the collected utilization traces. They found that if the transition time is shorter

than 1 ms, it becomes negligible and power savings vary linearly with the utilization for

all workloads. However, with the growth of the transition time, power savings decrease

and the performance penalty becomes higher. When the transition time reaches 100 ms,

the relative response time for low utilization can grow up to 3.5 times in comparison to a

system without power management, which is unacceptable for real-world systems.

The authors concluded that if the transition time is shorter than 10 ms, power sav-

ings are approximately linear to the utilization and significantly outperform the effect

2.4 The State of the Art in Energy-Efficient Computing Systems 43

from DVFS for low utilization (< 40%). However, the problem is that the requirement

of the transition time being less than 10 ms cannot be satisfied with the current level

of technology. According to the data provided by the authors, modern servers can en-

sure the transition time of 300 ms, which is far from the required 10 ms. The proposed

approach is similar to the fixed timeout DCD technique, but adapted to fine-grained ap-

plication. Therefore, all the disadvantages of the fixed timeout technique are inherited by

the approach, that is, a constant performance penalty on wake-ups and an overhead in

cases when the idle period is shorter than the transition time to and from the low-power

state. The authors reported that if the stated requirements are satisfied, the average server

power consumption can be reduced by 74%.

Barely Alive Memory Servers

Anagnostopoulou et al. [3] proposed a family of low-power server states referred to as

Barely Alive (BA). The approach is aimed at server environments, where workload con-

solidation is effective in reducing energy consumption, while fast server reactivation is a

necessity. Such systems include web server farms, where the average resource utilization

is below 50%; therefore, workload consolidation and switching idle servers off may bring

significant energy savings. However, the problem of turning servers off is that the reacti-

vation results in a substantial latency, which is undesirable and may lead to a reduction

in the QoS in cases of workload spikes.

With the proposed BA states, instead of completely shutting a server down, most

of its components are deactivated, while some are kept on. The BA1-BA5 states range

from keeping active only the memory devices, memory controller, and network interface

(O(30W) power consumption), to keeping active one or more CPU cores, fans, network

interfaces and discs (O(70W) power consumption). The proposed states result in fast

transition times back to the active states, i.e., on the order of seconds. Consequently,

the lower-power states result in higher transition times and energy consumption. A key

advantage of the proposed family of states is that they allow modifications of the data

resident in the main memory, while the server is in a low-power state and allowing low-

latency reactivation. This enables the system to use all of the cluster’s memory, while

adjusting the power consumption according to the current workload. The conducted

44 A Taxonomy and Survey of Energy-Efficient Computing Systems

simulation study revealed that the barely alive states are able to reduce service energy

consumption by up to 38% compared with an energy-oblivious system.

2.4.3 Virtualization Level

A technology that is able to improve the utilization of server resources, and thus, reduce

power consumption, is virtualization of computing resources. Virtualization introduces

an abstraction layer between an OS and hardware. Physical resources can be split into a

number of logical slices called Virtual Machines (VMs). Each VM can accommodate an

individual OS creating for the user a view of a dedicated physical resource and ensuring

the performance and failure isolation between VMs sharing a single physical machine.

Virtualization allows one to create several VMs on a physical server; and therefore,

reduce the amount of hardware in use and improve the utilization of resources. The con-

cept originated with the IBM mainframe OSes of the 1960s, but was commercialized for

x86-compatible computers only in the 1990s. Several commercial companies and open-

source projects now offer software packages to enable the transition to virtual computing.

Intel Corporation and AMD have also built proprietary virtualization enhancements to

the x86 instruction set to support hardware-assisted virtualization.

Among the benefits of virtualization are improved fault and performance isolation

between applications sharing the same compute node (a VM is viewed as a dedicated

resource to the user); the ability to relatively easily move VMs from one physical host to

another using live or offline migration; and support for hardware and software hetero-

geneity. The ability to migrate VMs at run-time enables the technique of energy-efficient

dynamic VM consolidation applied at the data center level, discussed in the next section.

The proliferation of virtualization has a potential to drive wider adoption of the con-

cept of terminal servers and thin clients, which have also been used in the Green IT prac-

tices. In this concept, multiple users connect to a central server over the network using

thin clients. While all the computing required by the users is done on the shared phys-

ical server, from the user perspective, the interaction is similar to that with a dedicated

computing resource. In regard to energy consumption, the advantage of thin clients is

that they consume significantly less energy compared with a regular workstation. Thin

clients started gaining relevance with the adoption of Software as a Service (SaaS), which

2.4 The State of the Art in Energy-Efficient Computing Systems 45

is one of the service models of Cloud computing [28], or Virtual Desktop Infrastructures

(VDI) promoted by virtualization software vendors, such as VMware View3, Citrix Xen-

Desktop4, and Oracle Virtual Desktop Infrastructure5.

The virtualization layer lies between the hardware and OS, and is implemented by a

Virtual Machine Monitor (VMM). The VMM takes control over the resource multiplexing

and manages the allocation of physical resources to the VMs. There are two ways in

which a VMM can participate in power management:

1. A VMM can act as a power-aware OS: monitor the overall system performance

and appropriately apply DVFS or any DCD techniques to the system components.

2. A VMM can leverage the power management policies applied by the guest OSes

using the application-level knowledge, and map power management commands

issued by the OSes of different VMs on actual changes in the hardware power

state, or enforce system-wide power limits in a coordinated manner.

The following subsections discuss three of the most popular virtualization technology

solutions: Xen hypervisor, VMware solutions, and Kernel-based Virtual Machine (KVM).

All of these systems support the first described way of power management; however,

none allows the coordination of VM specific calls for power state changes. Stoess et

al. [111] proposed an approach that utilizes both system-wide power control and fine-

grained application-specific power management performed by guest OSes.

The Xen Hypervisor

The Xen hypervisor is an open-source virtualization technology developed collabora-

tively by the Xen community and engineers from over 20 innovative data center solution

vendors [11]. Xen is licensed under the GNU General Public License (GPL2) and avail-

able at no charge in both source and object formats. Xen’s support for power manage-

ment is similar to what is provided by the Linux on-demand governor described earlier.

Xen supports ACPI P-states implemented in the cpufreq driver [124]. The system peri-

odically measures the CPU utilization, determines the appropriate P-state, and issues a

3VMware View. http://www.vmware.com/products/view/
4Citrix XenDesktop. http://www.citrix.com/products/xendesktop/
5Oracle Virtual Desktop Infrastructure. http://www.oracle.com/us/technologies/

virtualization/virtual-desktop-infrastructure/

http://www.vmware.com/products/view/
http://www.citrix.com/products/xendesktop/
http://www.oracle.com/us/technologies/virtualization/virtual-desktop-infrastructure/
http://www.oracle.com/us/technologies/virtualization/virtual-desktop-infrastructure/

46 A Taxonomy and Survey of Energy-Efficient Computing Systems

platform-dependent command to make a change in the hardware power state. Similarly

to the Linux power management subsystem, Xen contains four governors:

• Ondemand – chooses the best P-state according to current resource requirements.

• Userspace – sets the CPU frequency specified by the user.

• Performance – sets the highest available clock frequency.

• Powersave – sets the lowest clock frequency.

In addition to P-states, Xen also incorporates the support for C-states (CPU sleep

states) [124]. When a physical CPU does not have any task assigned, it is switched to a C-

state. When a new request comes, the CPU is switched back to the active state. The issue

is to determine which C-state to enter: deeper C-states provide higher energy savings by

the cost of a higher transition latency. At the moment, Xen by default switches the CPU

into the first C-state, which provides the shortest transition delay. However, the user can

specify a C-state to enter. As the CPU wakes up upon receiving load, it always gets an

inevitable performance penalty, which corresponds to the fixed timeout DCD policy.

Apart from P- and C-states, Xen also supports offline and live migration of VMs,

which can be leveraged by power-aware dynamic VM consolidation algorithms. Migra-

tion is used to transfer a VM between physical hosts. Offline migration moves a VM from

one host to another by suspending, copying the VM’s memory contents, and then resum-

ing the VM on the destination host. Live migration allows transferring a VM without a

suspension. From the user side such migration should be inconspicuous. To perform a

live migration, both hosts must be running Xen and the destination host must have suf-

ficient resources (e.g., memory capacity) to accommodate the VM after the transmission.

At the destination host Xen starts a new VM instance that forms a container for the VM

to be migrated. Xen cyclically copies memory pages to the destination host, continuously

refreshing the pages that have been updated on the source. When the number of modi-

fied pages is not shrinking anymore, it stops the source instance and copies the remaining

memory pages. Once the process is completed, the new VM instance is started.

To minimize the migration overhead, the hosts are usually connected to a Network

Attached Storage (NAS) or similar storage solution, which eliminates the necessity to

copy the disk content. It is claimed that the final phase of live migration (i.e., when

both instances are suspended) typically takes approximately 50 ms. Through their ex-

2.4 The State of the Art in Energy-Efficient Computing Systems 47

periments on a Xen testbed, Lefèvre and Orgerie [74] have shown that VM live migra-

tion has a significant impact on energy consumption. The live migration technology has

facilitated the development of various energy conservation dynamic VM consolidation

approaches proposed by researchers around the world.

Kernel-based Virtual Machine (KVM)

KVM is open source virtualization software implemented as a module of the Linux ker-

nel [67]. Under this model, Linux works as a hypervisor, while all the VMs are regular

processes managed by the Linux scheduler. This approach reduces the complexity of the

hypervisor implementation, as scheduling and memory management are handled by the

Linux kernel.

KVM supports the S4 (hibernate) and S3 (sleep/stand by) power states6. S4 does not

require any specific support from KVM: on hibernation, the guest OS dumps the memory

state to a hard disk and initiates powering off the computer. The hypervisor translates

this signal into termination of the appropriate process. On the next boot, the OS reads

the saved memory state from the disk, resumes from the hibernation, and reinitializes all

the devices. During the S3 state, memory is kept powered, and thus the content does not

need to be saved to a disk. However, the guest OS must save the states of the devices, as

they should be restored on a resume. During the next boot, the BIOS should recognize

the S3 state, and instead of initializing the devices jump directly to the restoration of the

saved device states. Therefore, the BIOS has to provide special support or such behavior.

VMware

VMware ESX Server and VMware ESXi are enterprise-level virtualization solutions of-

fered by VMware, Inc. Similar to Xen, VMware supports host-level power management

via DVFS. The system monitors the CPU utilization and continuously applies appropriate

ACPI’s P-states [120]. VMware VMotion and VMware Distributed Resource Scheduler

(DRS) are two other services that operate in conjunction with ESX Server and ESXi [121].

VMware VMotion enables live migration of VMs between physical nodes, which can be

6KVM Power Management. http://www.linux-kvm.org/page/PowerManagement

http://www.linux-kvm.org/page/PowerManagement

48 A Taxonomy and Survey of Energy-Efficient Computing Systems

initiated programmatically or manually by system administrators. VMware DRS moni-

tors the resource usage in a pool of servers and uses VMotion to continuously rebalance

VMs according to the current workload and load-balancing policy.

VMware DRS contains a subsystem called VMware Distributed Power Management

(DPM) to reduce power consumption by a pool of servers by dynamically switching off

spare servers [121]. Servers are powered back on when there is a rising demand for

resources. VMware DPM utilizes live migration to reallocate VMs keeping the minimal

number of servers powered on. VMware ESX Server and VMware ESXi are free for use,

whereas other components of VMware Infrastructure have a commercial license.

Energy Management for Hypervisor-based VMs

Stoess et al. [112] proposed a framework for energy management on virtualized servers.

Typically, energy-aware OSes assume the full knowledge and control over the underlying

hardware, implying device- or application-level accounting for the energy usage. How-

ever, in virtualized systems, a hardware resource is shared among multiple VMs. In such

an environment, device control and accounting information are distributed across mul-

tiple VMs making it infeasible for an OS to take the full control over the hardware. This

results in the inability of energy-aware OSes to apply their policies in the system. The

authors proposed mechanisms for fine-grained guest OS-level energy accounting and

allocation. To encompass the diverse demands for energy management, the authors pro-

posed the use of the notion of energy as the base abstraction in the system, an approach

similar to the currentcy model in ECOsystem described earlier.

The prototypical implementation comprises two subsystems: a host-level resource

manager and an energy-aware OS. The host-level manager enforces system-wide power

limits across VM instances. The power limits can be dictated by a battery or a power

generator, or by thermal constraints imposed by the reliability requirements and cooling

system capacity. To meet the defined power constraints, the manager determines power

limits for each VM and device type that cannot be exceeded. The complementary energy-

aware OS is capable of fine-grained application-specific energy management. To enable

application-specific energy management, the framework supports accounting and con-

trol not only for physical but also for virtual devices. This enables the guest resource

2.4 The State of the Art in Energy-Efficient Computing Systems 49

management subsystems to leverage their application-specific knowledge.

The experimental results showed that the prototype is capable of enforcing power

limits for energy-aware and energy-unaware guest OSes. Three areas are considered

to be important for future work: devices with multiple power states, processors with

support for hardware-assisted virtualization, and multi-core CPU architectures.

2.4.4 Data Center Level

This section discusses recent research efforts in the area of power management at the data

center level. Although DVFS provides an efficient way of managing power consumption

of the CPU, the overall dynamic power range of servers remains narrow. Even if a server

is completely idle, it still consumes up to 70% of power, as discussed in Section 2.2.2.

Eliminating static power consumption by servers is only possible by switching them off,

or to a low-power mode, such as the sleep mode. These circumstances have led to the

creation of various data center level solutions aimed at consolidating the workload to

fewer physical servers and deactivating the idle servers, which improves the utilization

of resources and reduces power / energy consumption.

Workload consolidation is a non-trivial problem since aggressive consolidation may

lead to performance degradation of applications. Therefore, consolidation is typically

constrained by QoS requirements often defined in terms of Service Level Agreements

(SLAs). The following subsections survey various approaches to energy-efficient re-

source management in non-virtualized and virtualized data centers. The taxonomy of

the characteristics used to classify the reviewed approaches is presented in Figure 2.7. In

particular, the following characteristics are considered:

• Virtualization – whether the approach leverages virtualization of data center re-

sources. This characteristic is especially important considering the proliferation of

Cloud computing.

• System resources – whether the system takes into account the utilization of a single

resource, such as the CPU, or multiple system resources.

• Target systems – whether the system is aimed at homogeneous or heterogeneous

computing resources. Efficient handling of heterogeneity is crucial in large-scale

data centers, as their capacity is typically increased incrementally over time result-

50 A Taxonomy and Survey of Energy-Efficient Computing Systems

ing in a system of heterogeneous resources.

• Goal – whether the goal of the system is to minimize power / energy consumption

under performance constraints; or meet the power budget.

• Power-saving techniques – whether the system applies DPS, such as DVFS; re-

source throttling; DCD, including switching the power states of whole servers; or

workload / VM consolidation to minimize power / energy consumption.

• Workload – whether the system is application-agnostic and able to handle arbitrary

workloads; or focuses on particular types of applications, such as services or HPC.

• Architecture – whether the resource management system is centralized requiring a

control algorithm to run on a master node, or distributed.

Table 2.3 highlights the most significant characteristics of the reviewed solutions pro-

posed in the literature. The next section discusses implications of Cloud computing,

followed by a survey of proposed approaches to energy-efficient resource management

in data centers.

Table 2.3: Data center level research

Authors Virt. Resources Goal Power-saving

Pinheiro et al. [97] No CPU, disk,
network

Min energy under per-
formance constraints

Workload consolidation,
server power switching

Chase et al. [32] No CPU Min energy under per-
formance constraints

Workload consolidation,
server power switching

Elnozahy et al. [43] No CPU Min energy under per-
formance constraints

DVFS, server power
switching

Chen et al. [33] No CPU Min energy under per-
formance constraints

DVFS, workload consol-
idation, server power
switching

Heath et al. [58] No CPU, disk,
network

Min energy, max
throughput

Workload consolidation,
server power switching

Srikantaiah et
al. [108]

No CPU, disk Min energy under per-
formance constraints

Workload consolidation,
server power switching

Gandhi et al. [50] No CPU Meet power budget and
min mean execution time

DVFS

Garg et al. [51] No CPU Min energy and CO2
emissions, max profit

Leveraging heterogene-
ity, DVFS

Nathuji and
Schwan [85, 86]

Yes CPU Min energy under per-
formance constraints

DFVS, soft scaling, VM
consolidation, server
power switching

Raghavendra et
al. [100]

Yes CPU Min power and meet
power budget

DVFS, VM consoli-
dation, server power
switching

Kusic et al. [72] Yes CPU Min power under perfor-
mance constraints

VM consolidation, server
power switching

2.4 The State of the Art in Energy-Efficient Computing Systems 51

Table 2.3: Data center level research (continued)

Authors Virt. Resources Goal Power-saving

Stillwell et al. [110] Yes CPU Min energy under per-
formance constraints

VM consolidation, re-
source throttling

Song et al. [106] Yes CPU, RAM Min energy under per-
formance constraints

Resource throttling

Cardosa et al. [31] Yes CPU Min power under perfor-
mance constraints

DFVS, soft scaling

Verma et al. [119] Yes CPU Min power under perfor-
mance constraints

DVFS, VM consoli-
dation, server power
switching

Gmach et al. [55] Yes CPU, RAM Min energy under per-
formance constraints

VM consolidation, server
power switching

Buyya et al. [27, 66] Yes CPU Min energy under per-
formance constraints

Leveraging heterogene-
ity, DVFS

Kumar et al. [71] Yes CPU,
RAM,
network

Min power under perfor-
mance and power bud-
get constraints

DVFS, VM consolidation

Implications of Cloud Computing

Traditionally, an organization purchases its own computing resources and deals with

the maintenance and upgrades of the hardware and software, resulting in additional ex-

penses. The recently emerged Cloud computing paradigm [28] leverages virtualization

and provides the ability to provision resources on-demand on a pay-as-you-go basis. Or-

ganizations can outsource their computation needs to the Cloud, thereby eliminating the

necessity to maintain their own computing infrastructure. Cloud computing naturally

leads to energy efficiency by providing the following characteristics:

• Economy of scale and elimination of redundancies.

• Increased utilization of computing resources.

• Location independence – VMs can be moved to a place where energy is cheaper.

• Scaling up/down and in/out – the resource usage can be adjusted to suit the cur-

rent requirements.

• Efficient resource management by Cloud providers, which maximize their profit.

Cloud computing has become a very promising paradigm for both consumers and

providers in various areas including science, engineering, and not to mention business.

A Cloud typically consists of multiple resources possibly distributed and heterogeneous.

52 A Taxonomy and Survey of Energy-Efficient Computing Systems

Data center level

Virtualization

System resources

Target systems

Goal

Power saving techniques

Workload

Yes

No

Multiple resources

Single resource

Homogeneous

Heterogeneous

Minimize power / energy

consumption

Satisfy performance

constraints

DPS, e.g., DVFS

Meet power budget

DCD

Resource throttling

Arbitrary

Service applications

HPC applications

Workload consolidation

Architecture

Distributed

Centralized

Figure 2.7: The data center level taxonomy

2.4 The State of the Art in Energy-Efficient Computing Systems 53

Although the notion of a Cloud has existed in one form or another for some time now

(its roots can be traced back to the mainframe era [93]), recent advances in virtualiza-

tion technologies and the business trend of reducing the TCO in particular have made it

much more appealing compared to when it was first introduced. There are many benefits

from the adoption and deployment of Clouds, such as scalability and reliability; however,

Clouds in essence aim to deliver more economical solutions to both parties (consumers

and providers). Economical means that consumers only need to pay per their use and

providers can capitalize poorly utilized resources.

From the provider’s perspective, the maximization of their profit is the highest pri-

ority. In this regard, the minimization of energy consumption plays a crucial role. Re-

cursively, energy consumption can be much reduced by increasing the resource utiliza-

tion. Large profit-driven Cloud service providers typically develop and implement bet-

ter power management, since they are interested in taking all necessary means to reduce

energy costs to maximize their profit. It has been shown that a reduction in energy con-

sumption by more effectively dealing with resource provisioning (avoidance of resource

under/over provisioning) can be obtained [6].

One of the important requirements for a Cloud computing environment is provid-

ing reliable QoS. It can be defined in terms of SLAs that describe such characteristics

as the minimum allowed throughput, maximum response time, or latency delivered by

the deployed system. Although modern virtualization technologies can ensure perfor-

mance isolation between VMs sharing the same physical node, aggressive consolidation

and variability of the workload may result in performance degradation of applications.

Performance degradation may lead to increased response times, timeouts, or failures.

Therefore, Cloud providers have to deal with the energy-performance trade-off – mini-

mization of energy consumption, while meeting the QoS requirements.

Another problem is that Cloud applications require movements of large data sets be-

tween the infrastructure and consumers; thus it is essential to consider both compute

and network aspects of the energy efficiency [8, 9]. Energy usage in large-scale com-

puting systems like Clouds yields many other concerns, such as carbon emissions and

system reliability. In the following sections it is shown how recent research addresses the

mentioned problems.

54 A Taxonomy and Survey of Energy-Efficient Computing Systems

Load Management for Power and Performance in Clusters

Pinheiro et al. [97] proposed a technique for managing a non-virtualized cluster of phys-

ical machines with the objective of minimizing energy consumption, while providing

the required QoS. The authors presented a new direction of research as all previous

works focused on power efficiency in mobile systems or load balancing in clusters. The

main technique to minimize power consumption is load concentration, or unbalancing,

while switching idle compute nodes off. The approach requires dealing with the power-

performance trade-off, as application performance can be degraded due to consolidation.

The authors used the throughput and execution time of applications as constraints

for ensuring the QoS. The nodes are assumed to be homogeneous. The algorithm peri-

odically monitors the workload and decides which nodes should be turned on or off to

minimize power consumption by the system, while providing the expected performance.

To estimate the performance delivered by the system, the authors applied a notion of de-

mand for resources, where resources include CPU, disk, and network interface. This

notion is used to predict performance degradation and throughput due to workload mi-

gration based on historical data. To determine the time to add or remove a node, the

authors introduced a total demand threshold that is set statically for each node. Addi-

tionally, this threshold is intended to solve the problem of the latency caused by a node

addition, but may lead to performance degradation in the case of a fast demand growth.

The actual load distribution across active compute nodes is not handled by the sys-

tem and has to be managed by the applications. The resource management algorithm is

executed on a master node that creates a single point of failure and may become a per-

formance bottleneck in a large system. In addition, it is claimed that reconfiguration op-

erations are time-consuming and the implementation of the algorithm adds or removes

only one node at a time that may result in slow reaction in large-scale environments.

The authors also investigated the cooperation between the applications and OS in

terms of power management decisions. They found that such cooperation can help to

achieve more efficient control at the cost of requiring modification of the applications.

To evaluate the approach, the authors conducted several experimental studies with two

workload types: web applications and compute-intensive applications. The evaluation

showed that the approach can be efficiently applied to various workload types.

2.4 The State of the Art in Energy-Efficient Computing Systems 55

Managing Energy and Server Resources in Hosting Centers

Chase et al. [32] studied the problem of managing server resources in Internet hosting

centers. Servers are shared among multiple service applications with SLAs defined in

terms of throughput and latency constraints. The authors developed Muse, an OS for an

Internet hosting center aimed at managing and coordinating interactions between a data

center’s components. The objective is not just to schedule resources efficiently but also to

minimize the consumption of electrical power by the system. The proposed approach is

applied to reduce: operating costs (power consumption by the computing resources and

cooling system); CO2 emissions, and thus the impact on the environment; thermal vulner-

ability of the system due to cooling failures or high service load; and over-provisioning

in capacity planning. Muse addresses these problems by automatically scaling back the

power demand (and therefore waste heat) when appropriate. Such a control over the re-

source usage optimizes the trade-off between the service quality and price, enabling the

support for flexible SLAs negotiated between consumers and the resource provider.

The main challenge is to determine the resource demand of each application at its

current request load level, and to allocate resources in the most efficient way. To deal

with this problem, the authors applied an economic framework: the system allocates re-

sources in a way that maximizes the “profit” by balancing the cost of each resource unit

against the estimated utility, or the “revenue” that is gained from allocating that resource

unit to a service. Services “bid” for resources in terms of the volume and quality. This

enables negotiation of the SLAs according to the available budget and QoS requirements,

i.e., balancing the cost of resource usage (energy cost) and benefit gained due to the usage

of this resource. This enables the data center to increase energy efficiency under a fluctu-

ating workload, dynamically match the load and power consumption requirements, and

respond gracefully to resource shortages.

The system maintains a set of active servers selected to serve requests for each service.

Network switches are dynamically reconfigured to change the active set when necessary.

Energy consumption is reduced by switching idle servers to power-saving modes (e.g.,

sleep, hibernation). The system is targeted at the web workload, which leads to a “noise”

in the load data. The authors addressed this problem by applying the statistical “flip-

flop” filter, which reduces the number of unproductive reallocations and leads to a more

56 A Taxonomy and Survey of Energy-Efficient Computing Systems

stable and efficient control.

This work has created a foundation for numerous studies in the area of power-efficient

resource management at the data center level; however, the proposed approach has a few

weaknesses. The system deals only with the CPU management, but does not take into

account other system resources such as memory, disk storage, and network interface.

It utilizes APM, which is an outdated standard for Intel-based systems, while currently

adopted by industry standard is ACPI. The thermal factor, as well as the latency due to

switching physical nodes on/off are not directly taken into account. The authors pointed

out that the management algorithm is stable, but it turns out to be relatively expensive

during significant changes in the workload. Moreover, heterogeneity of the software con-

figuration requirements is not handled, which can be addressed by virtualization.

Energy-Efficient Server Clusters

Elnozahy et al. [43] explored the problem of power-efficient resource management in

a homogeneous cluster serving a single web application with SLAs defined in terms of

response time constraints. The motivation for the work is the reduction of operating costs

and server overheating. The approach applies two power management mechanisms:

switching servers on and off (Vary-On Vary-Off, VOVO) and DVFS.

The authors proposed five resource management policies: Independent Voltage Scal-

ing (IVS), Coordinated Voltage Scaling (CVS), VOVO, combined policy (VOVO-IVS), and

coordinated combined policy (VOVO-CVS). The last mentioned policy is claimed to be

the most advanced and is provided with a detailed description and mathematical model

for determining CPU frequency thresholds. The thresholds define when it is appropriate

to turn on an additional physical node or turn off an idle node. The main idea of the pol-

icy is to estimate the total CPU frequency required to provide the expected response time,

determine the optimal number of physical nodes, and proportionally set their frequency.

The experimental results showed that the proposed IVS policy can provide up to 29%

energy savings and is competitive with more complex schemes for some workloads.

VOVO policy can produce saving up to 42%, whereas CVS policy in conjunction with

VOVO (VOVO-CVS) results in 18% higher savings that are obtained using VOVO inde-

pendently. However, the proposed approach is limited in the following aspects. The time

2.4 The State of the Art in Energy-Efficient Computing Systems 57

required for starting up an additional node is not taken into account in the model. Only a

single application is assumed to be running in the cluster, and load balancing is supposed

to be done by an external system. Moreover, the algorithm is centralized, which creates

a single point of failure and reduces the system scalability. The workload data are not

approximated, which can lead to inefficient decisions due to fluctuations in the demand.

No other system resources except for the CPU are managed.

Managing Server Energy and Operational Costs in Hosting Centers

Chen et al. [33] proposed an approach to managing multiple server applications in host-

ing centers for minimizing energy consumption, while meeting SLA requirements. The

approach consists in two base phases executed periodically: (1) allocating a number of

servers to each application to serve the current workload level; and (2) setting the DVFS

parameters on servers suitable for serving the corresponding application’s current work-

load. After each server allocation phase, the servers becoming idle get switched off to

conserve energy. One of the distinguishing characteristics of this research is the con-

sideration of SLA requirements in terms of a bound on the response time as an explicit

constraint of the optimization problem. The objective of the optimization problem is to

minimize the total cost comprising the electricity cost and the cost of the impact of switch-

ing servers on / off, which significantly affects the long term reliability of the system, thus

reducing the Mean Time Between Failures (MTBF).

The authors addressed the defined problem using a hybrid approach consisting of a

queueing theory-based approach and control theoretic approach. The queueing theory-

based approach predicts the workload for the near future and tunes the server allocation

appropriately. Since it is based on a steady-state analysis, it may not be accurate for fine-

grained transient behavior. The feedback-based control theoretic approach is invoked

at shorter time intervals and applied to adjust the DVFS settings of the servers at finer

granularities. The proposed hybrid scheme is suitable for practical applications, where is

it desirable to adjust the server provisioning less frequently due to significant overheads,

and perform DVFS control more frequently. The experimental evaluation demonstrated

that the proposed approach leads to significant energy savings, while meeting the defined

SLA requirements.

58 A Taxonomy and Survey of Energy-Efficient Computing Systems

Energy Conservation in Heterogeneous Server Clusters

Heath et al. [58] investigated the problem of energy-efficient request distribution in het-

erogeneous clusters hosting server applications, such as web servers. This is the first

research work that considered energy-efficient workload distribution in heterogeneous

clusters and leveraged the heterogeneity to achieve additional energy savings. The pro-

posed model is based on the idea of quantifying the performance of heterogeneous servers

in terms of the throughput provided by the server resources, e.g., CPU, disk. The server

power consumption is estimated according to the utilization of each resource. Next, the

application deployed on the cluster is profiled to map the performance requirements of

each application request type on the throughput of the server resources. The application-

specific tuning allows the system to provide higher energy savings and throughput.

The authors proposed analytical models that use the expected cluster load to predict

the overall throughput and power consumption as a function of the request distribution.

Simulated annealing is applied to find a request distribution from clients to servers and

among servers that minimizes the power / throughput ratio for each workload level.

Since the optimization algorithm is time-consuming, it is executed offline to obtain the

best request distribution for each workload intensity level. This information is used on-

line by the master node to look up the best request distribution and reconfigure the sys-

tem. To validate the proposed approach, the authors implemented a web server running

on a heterogeneous cluster of traditional and blade servers. The experiments showed that

the proposed approach is able to reduce energy consumption by the system by 42% com-

pared with an energy-oblivious system, while resulting in only 0.35% loss in throughput.

Energy-Aware Consolidation for Cloud Computing

Srikantaiah et al. [108] investigated the problem of dynamic consolidation of applica-

tions serving small stateless requests in data centers to minimize energy consumption.

First of all, the authors explored the impact of workload consolidation on the energy-

per-transaction metric depending on both the CPU and disk utilization. The obtained

experimental results showed that the consolidation influences the relationship between

energy consumption and utilization of resources in a non-trivial manner. The authors

2.4 The State of the Art in Energy-Efficient Computing Systems 59

found that energy consumption per transaction results in “U”-shaped curve. When the

utilization is low, the resource is not efficiently used leading to a higher cost in terms

of the energy-performance metric. However, high resource utilization results in an in-

creased cache miss rate, context switches, and scheduling conflicts leading to high energy

consumption due to performance degradation and consequently longer execution time.

For the described experimental setup, the optimal points of utilization are at 70% and

50% for the CPU and disk utilization, respectively.

According to the obtained results, the authors stated that the goal of energy-aware

workload consolidation is to keep servers well utilized, while avoiding performance

degradation caused by high utilization. They modeled the problem as a multi-dimensional

bin packing problem, in which servers are represented by bins, and each resource (i.e.,

CPU, memory, disk, and network) is considered as a dimension of the bin. The bin size

along each dimension is defined by the determined optimal utilization level. The applica-

tions with known resource utilization are represented by objects with an appropriate size

in each dimension. The minimization of the number of bins leads to the minimization of

energy consumption by switching idle nodes off.

The authors proposed a heuristic for the defined bin packing problem. The heuristic

is based on the minimization of the sum of the Euclidean distances of the current alloca-

tions to the optimal point at each server. As a request for execution of a new application

is received, the application is allocated to a server using the proposed heuristic. If the

capacity of the active servers is fully utilized, a new server is switched on, and all the

applications are reallocated using the same heuristic in an arbitrary order.

According to the experimental results, energy used by the proposed heuristic is about

5.4% higher than optimal. The proposed approach is suitable for heterogeneous environ-

ments; however, it has several shortcomings. First of all, resource requirements of appli-

cations are assumed to be known a priori and constant. Moreover, migration of state-full

applications between nodes incurs performance and energy overheads, which are not

modeled. Switching servers on/off also leads to significant costs that must be considered

for a real-world system. Another problem with the approach is the necessity in an ex-

perimental study to obtain the optimal points of the resource utilization for each server.

Furthermore, the decision of keeping the upper threshold of the resource utilization at

60 A Taxonomy and Survey of Energy-Efficient Computing Systems

the optimal point is not completely justified as the utilization above the threshold can

symmetrically provide the same energy-per-transaction level as lower utilization.

Optimal Power Allocation in Server Farms

Gandhi et al. [50] studied the problem of allocating an available power budget to servers

in a heterogeneous server farm to minimize the mean execution time of HPC applica-

tions. The authors investigated how CPU frequency scaling techniques affect power

consumption. They conducted experiments applying DFS (T-states), DVFS (P-states),

and DVFS+DFS (coarse-grained P-states combined with fine-grained T-states) for CPU-

intensive workloads. The results showed a linear power-to-frequency relationship for the

DFS and DVFS techniques and cubic square relationship for DVFS+DFS.

Given the power-to-frequency relationship, the authors investigated the problem of

finding the optimal power allocation as a problem of determining the optimal frequencies

of the CPUs of each server, while minimizing the mean execution time. To investigate the

effect of different factors on the mean execution time, the authors introduced a queueing

model, which allows prediction of the mean response time as a function of the power-

to-frequency relationship, arrival rate, peak power budget, and so on. The model allows

determining the optimal power allocation for every configuration of the above factors.

The approach was experimentally evaluated against different types of workloads.

The results showed that an efficient power allocation can significantly vary for differ-

ent workloads. To gain the best performance constrained by a power budget, running

a small number of servers at their maximum speed is not always optimal. Oppositely,

depending on the workload it can be more efficient to run more servers but at lower

performance levels. The experimental results showed that efficient power allocation can

improve server the farm performance up to a factor of 5 and by a factor of 1.4 on average.

Environment-Conscious Scheduling of HPC Applications

Garg et al. [51] investigated the problem of energy and CO2 efficient scheduling of HPC

applications in geographically distributed Cloud data centers. The aim is to provide

HPC users with the ability to leverage high-end computing resources supplied by Cloud

2.4 The State of the Art in Energy-Efficient Computing Systems 61

computing environments on demand and on a pay-as-you-go basis. The authors ad-

dressed the problem in the context of a Cloud resource provider and presented heuris-

tics for energy-efficient meta-scheduling of applications across heterogeneous resource

sites. Apart from reducing the maintenance costs, which results in a higher profit for

the resource provider, the proposed approach decreases CO2 footprints. The proposed

scheduling algorithms take into account energy cost, carbon emission rate, workload,

and CPU power efficiency, which change across different data centers depending on their

location, design, and resource management system.

The authors proposed five scheduling policies: two of which minimize CO2 emis-

sions, two maximize the profit of resource providers, and a multi-objective policy that

minimizes CO2 emissions and maximizes the profit. The multi-objective policy finds for

each application a data center that provides the lowest CO2 emissions across all the data

centers able to complete the application by the deadline. Then from all the application-

data center pairs, the policy chooses the one that results in the maximal profit. These

steps are repeated until all the applications are scheduled. Energy consumption is also

reduced by applying DVFS to all the CPUs in data centers.

The proposed heuristics were evaluated using simulations of different scenarios. The

experimental results showed that the energy-centric policies allow the reduction of en-

ergy costs by 33% on average. The proposed multi-objective algorithm can be effectively

applied when limitations of CO2 emissions are desired by resource providers or forced

by governments. This algorithm leads to a reduction of the carbon emission rate, while

maintaining a high level of profit.

VirtualPower: Coordinated Power Management

Nathuji and Schwan [85, 86] investigated the problem of power-efficient resource man-

agement in large-scale virtualized data centers. This is the first time when power man-

agement techniques were explored in the context of virtualized systems. Besides the

hardware scaling and VMs consolidation, the authors apply a new power management

technique in the context of virtualized systems called “soft resource scaling”. The idea is

to emulate hardware scaling by providing a VM less time for utilizing a resource using

the VMM’s scheduling capability. “Soft” scaling is useful when hardware scaling is not

62 A Taxonomy and Survey of Energy-Efficient Computing Systems

supported or provides a very small power benefit. The authors found that the combi-

nation of “hard” and “soft” scaling may provide higher power savings due to usually

limited number of hardware scaling states.

The goals of the proposed approach are support for the isolated and independent

operation of guest VMs, and control and coordination of diverse power management

policies applied by the VMs to resources. The system intercepts guest VMs’ ACPI calls

to perform changes in power states, maps them on “soft” states, and uses them as hints

for actual changes in the hardware power state. This way, the system supports a guest

VM’s system level or application level power management policies, while maintaining

the isolation between multiple VMs sharing the same physical node.

The authors proposed splitting resource management into local and global policies.

At the local level, the system coordinates and leverages power management policies of

guest VMs at each physical machine. An example of such a policy is the on-demand

governor integrated into the Linux kernel. At this level, the application-level QoS is

maintained as decisions about changes in power states are issued the guest OS.

The authors described several local policies aimed at the minimization of power con-

sumption under QoS constraints, and at power capping. The global policies are responsi-

ble for managing multiple physical machines using the knowledge of rack- or blade-level

hardware characteristics and requirements. These policies consolidate VMs using migra-

tion in order to free lightly loaded server and place them into power saving states. The

experiments conducted by the authors showed that the usage of the proposed approach

leads to efficient coordination of VM and application-specific power management poli-

cies, and reduces power consumption up to 34% with little or no performance penalties.

Coordinated Multilevel Power Management

Raghavendra et al. [100] investigated the problem of power management in a data center

by combining and coordinating five diverse power management policies. The authors

argued that although a centralized solution can be implemented to handle all aspects of

power management, it is more likely for a business environment that different solutions

from multiple vendors are applied. In this case, it is necessary to solve the problem of

coordination between individual controllers to provide correct, stable, and efficient con-

2.4 The State of the Art in Energy-Efficient Computing Systems 63

trol. The authors classified existing solutions by a number of characteristics including the

objective function, performance constraints, hardware/software, and local/global types

of policies. Instead of trying to address the whole space, the authors focused on five in-

dividual solutions and proposed five appropriate power management controllers. They

applied a feedback control loop to coordinate the controller actions.

The efficiency controller optimizes the average power consumption by individual

servers. The controller monitors the utilization of resources and based on these data

predicts the future demand and appropriately adjusts the P-state of the CPU. The server

manager implements power capping at the server level. It monitors power consumption

by the server and reduces the P-state if the power budget is violated. The enclosure man-

ager and the group manager implement power capping at the enclosure and data center

level, respectively. They monitor individual power consumption across a collection of

machines and dynamically re-provision power across them to maintain the group-level

power budget. Power budgets can be defined by system designers based on thermal or

power delivery constraints, or by high-level power managers.

The VM controller reduces power consumption across multiple physical nodes by

dynamically consolidating VMs and switching idle servers off. The authors provided

an integer programming model for the VM allocation optimization problem. However,

the proposed model does not provide a protection from unproductive migrations due to

workload fluctuations and does not show how SLA can be guaranteed in cases of fast

changes in the workload. Furthermore, the transition time for reactivating servers and

the ability to handle multiple system resources apart from the CPU are not considered.

The authors provided experimental results, which showed the ability of the system to

reduce power consumption under different workloads. The authors made an interesting

observation: the actual power savings can vary depending on the workload, but “the

benefits from coordination are qualitatively similar for all classes of workloads”.

Power and Performance Management via Lookahead Control

Kusic et al. [72] explored the problem of power and performance efficient resource man-

agement in virtualized data centers. The problem is narrowed to dynamic provisioning

of VMs for multi-tiered web applications according to the current workload (number of

64 A Taxonomy and Survey of Energy-Efficient Computing Systems

incoming requests). The SLAs for each application are defined in terms of the request

processing rate. The clients pay for the provided service and receive a refund in a case

of SLA violation as a penalty to the resource provider. The objective is to maximize the

resource provider’s profit by minimizing both power consumption and SLA violation.

The problem is defined as a sequential optimization and addressed using the Limited

Lookahead Control (LLC). Decision variables are the number of VMs to be provisioned

for each service; the CPU share allocated to each VM; the number of servers to switch on

or off; and the fraction of the incoming workload to distribute across the servers hosting.

The workload is assumed to be quickly changing, which means that the resource al-

location must be adapted over short time periods – “in order of 10 seconds to a few

minutes”. This requirement makes the high performance of the optimization controller

essential. The authors also incorporated in the model the time delays and costs incurred

for switching hosts and VMs on/off. Dynamic VM consolidation via offline migration

combined with switching hosts on/off are applied as power-saving mechanisms. How-

ever, DVFS is not performed due to low-power reduction effect as argued by the authors.

The authors applied Kalman filter to estimate the number of future application requests,

which is used to predict the future system state and perform necessary reallocations.

The authors provided a mathematical model for the optimization problem. The utility

function is risk-aware and includes risks of “excessive switching caused by workload

variability” as well as the transient power consumption and opportunity costs. However,

the proposed model requires application-specific adjustments though simulation-based

learning: the processing rate of VMs with different CPU shares must be known a priori

for each application. Moreover, due to the complexity of the model, the execution time of

the optimization controller reaches 30 min even for a small experimental setup (15 hosts),

which is not suitable for large-scale real-world systems. The experimental results show

that a server cluster managed using LLC saves 26% in the power consumption costs over

a 24 hour period with the SLAs being violated for 1.6% of requests.

Resource Allocation Using Virtual Clusters

Stillwell et al. [110] studied the problem of resource allocation for HPC applications in

virtualized homogeneous clusters. The objective is to maximize the resource utilization,

2.4 The State of the Art in Energy-Efficient Computing Systems 65

while optimizing a user-centric metric that encompasses both performance and fairness,

which is referred to as the yield. The yield of a job is “a fraction of its maximum achiev-

able compute rate that is achieved”. A yield of 1 means that the job consumes computa-

tional resources at its peak rate. To formally define the basic resource allocation problem

as a Mixed Integer Programming (MIP) model, the authors assumed that an application

requires only one VM instance; the application’s computational power and memory re-

quirements are static and known a priori.

However, the solution of the model requires exponential time, and thus can only be

obtained for small instances of the problem. The authors proposed several heuristics to

solve the problem and evaluated them experimentally across different workloads. The

results showed that the multi-capacity bin packing algorithm that sorts tasks in the de-

scending order of their largest resource requirement outperforms or equals to all the other

evaluated algorithms in terms of the minimum and average yield, and the failure rate.

Subsequently, the authors relaxed the stated assumptions and considered parallel ap-

plications and dynamic workloads. The researchers defined a MIP model for parallel

applications and adapted the previously designed heuristics to the new model. Dynamic

workloads allow the application of VM migration to address the variability of the work-

load. To limit the VM migration overhead, the authors fixed the amount of bytes that

can be transferred at one time. The authors provided a MIP model for the defined prob-

lem; however, no heuristic was proposed to solve large-scale problem instances. Limi-

tations of the proposed approach are that no other system resources except for the CPU

are considered in the optimization, and that the resource demands of the applications are

assumed to be known a priori, which is not typical in practice.

Multi-Tiered On-Demand Resource Scheduling for VM-Based Data Center

Song et al. [106] studied the problem of efficient resource allocation in multi-application

virtualized data centers. The objective is to improve the utilization of resources leading

to the reduced energy consumption. To ensure the QoS, the resources are allocated to

applications proportionally according to the application priorities. Each application can

be deployed using several VMs instantiated on different physical nodes. Only the CPU

and RAM utilization are taken into account in resource management decisions.

66 A Taxonomy and Survey of Energy-Efficient Computing Systems

In cases of limited resources, the performance of a low-priority application is inten-

tionally degraded and the resources are allocated to critical applications. The authors

proposed scheduling at three levels: the application-level scheduler dispatches requests

across the application’s VMs; the local level scheduler allocates resources to VMs running

on a physical node according to their priorities; and the global-level scheduler controls

the resource “flow” between the applications. Rather than applying VM migration to im-

plement the global resource flow, the system pre-instantiates VMs on a group of physical

nodes and allocates fractions of the total amount of resources assigned to an application

to different VMs.

The authors presented a linear programming model for the resource allocation prob-

lem and a heuristic for this model. They provided experimental results for three different

applications running in a cluster: a web application, a database, and a virtualized office

application showing that the approach satisfies the defined SLAs. One of the limitations

of the proposed approach is that it requires machine learning to obtain utility functions

for each application. Moreover, it does not utilize VM migration to adapt the VM place-

ment at run-time. The approach is suitable for environments, where applications can

have explicitly defined priorities.

Shares- and Utilities-based Power Consolidation

Cardosa et al. [31] investigated the problem of power-efficient VM allocation in virtu-

alized enterprise computing environments. They leveraged the min, max, and shares pa-

rameters supported by many modern VM managers. The min and max parameters allow

the user to specify the minimum and maximum of CPU time that can be allocated to a

VM. The shares parameter determines proportions, in which the CPU time is allocated

to VMs sharing the same resource. Such approach suits only environments where VMs

have pre-defined priorities.

The authors provided a mathematical formulation of the optimization problem. The

objective function includes power consumption and utility gained from the execution of

a VM, which is assumed to be known a priori. The authors provided several heuristics

for the defined model and experimental results. A basic strategy is to place all the VMs

at their maximum resource requirements in a first-fit manner and leave 10% of the spare

2.4 The State of the Art in Energy-Efficient Computing Systems 67

capacity to handle the future growth of the resource usage. The algorithm leverages the

heterogeneity of the infrastructure by sorting physical machines in the increasing order

of the power cost per unit of capacity.

The limitations of the basic strategy are that it does not leverage the relative priori-

ties of different VMs, but always allocates a VM at its maximum resource requirements,

and uses only 90% of a server’s capacity. This algorithm was used as the benchmark

policy and was improved upon eventually culminating in the recommended PowerEx-

pandMinMax algorithm. In comparison to the basic policy, this algorithm uses the value

of profit that can be gained by allocating an amount of resource to a particular VM. It

leverages the ability to shrink a VM to minimum resource requirements when necessary,

and expand it when it is allowed by the spare capacity and can bring additional profit.

The power consumption cost incurred by each physical server is deducted from the profit

to limit the number of servers in use.

The authors evaluated the proposed algorithms by large-scale simulations and exper-

iments on a small data center testbed. The experimental results showed that the Pow-

erExpandMinMax algorithm consistently outperforms the other policies across a broad

spectrum of inputs – varying VM sizes and utilities, varying server capacities, and vary-

ing power costs. One of the experiments on a real testbed showed that the overall utility

of the data center can be improved by 47%. A limitation of this work is that VM migration

is not applied to adapt the VM allocation at run-time – the allocation is static. Another

problem is that no other system resources except for the CPU are taken into account by

the model. Moreover, the approach requires static definition of the application priorities

that limits its applicability.

pMapper: Power and Migration Cost Aware Application Placement

Verma et al. [119] investigated the problem of dynamic placement of applications in vir-

tualized systems, while minimizing power consumption and meeting the SLAs. To ad-

dress the problem, the authors proposed the pMapper application placement framework.

It consists of three managers and an arbitrator, which coordinates their actions and makes

allocation decisions. Performance Manager monitors the behavior of applications and re-

sizes the VMs according to the current resource requirements and SLAs. Power Manager

68 A Taxonomy and Survey of Energy-Efficient Computing Systems

is in charge of adjusting hardware power states and applying DVFS. Migration Manager

issues instructions for VM live migration to consolidate the workload. Arbitrator has a

global view of the system and makes decisions about new placements of VMs and de-

termines the VM reallocations necessary to achieve a new placement. The authors claim

that the proposed framework is general enough to be able to incorporate different power

and performance management strategies under SLA constraints.

The authors formulated the problem as a continuous optimization: at each time frame,

the VM placement is optimized to minimize power consumption and maximize the per-

formance. They made several assumptions to solve the problem, which are justified by

experimental studies. The first is performance isolation, which means that a VM can be

seen by an application running on that VM as a dedicated physical server with the char-

acteristics equal to the VM parameters. The second assumption is that the duration of a

VM live migration does not depend on the background load, and the cost of migration

can be estimated based on the VM size and profit decrease caused by an SLA violation.

The solution does not focus on specific applications and can be applied to any kind of

workload. Another assumption is that the algorithm can minimize power consumption

without knowing the actual amount of power consumed by the applications.

The authors presented several algorithms to solve the problem defined as a bin pack-

ing problem with variable bin sizes and costs. The bins, items to pack, and bin costs

represent servers, VMs, and power consumption of servers, respectively. To solve the

bin packing problem, the First-Fit Decreasing (FFD) algorithm was adapted to work for

differently sized bins with item-dependent cost functions. The problem was divided into

two sub-problems: (1) new utilization values are determined for each server based on

the cost functions and required performance; and (2) the applications are placed onto

servers to reach the target utilization. This algorithm is called min Power Packing (mPP).

The first phase of mPP solves the cost minimization problem, whereas the second phase

solves the application placement problem.

mPP was adapted to reduce the migration cost by keeping track of the previous place-

ment, while solving the second phase. This variant is referred to as mPPH. Finally, the

placement algorithm was designed that optimizes the power and migration cost trade-off

(pMaP). A VM is chosen to be migrated only if the revenue due to the new placement ex-

2.4 The State of the Art in Energy-Efficient Computing Systems 69

ceeds the migration cost. pMap searches the space between the old and new placements

and finds a placement that minimizes the overall cost (sum of the power and migration

costs). The authors implemented the pMapper architecture with the proposed algorithms

and performed experiments to validate the efficiency of the approach. The experimen-

tal results showed that the approach allows saving about 25% of power relatively to the

Static and Load Balanced Placement algorithms. The researchers suggested several direc-

tions for future work such as the consideration of memory bandwidth, a more advanced

application of idle states, and an extension of the theoretical formulation of the problem.

Resource Pool Management: Reactive Versus Proactive

Gmach et al. [55] studied the problem of energy-efficient dynamic VM consolidation in

enterprise environments. The authors proposed a combination of a trace-based work-

load placement controller and a reactive migration controller. The trace-based work-

load placement controller collects data on resource usage by VMs instantiated in the data

center and uses this historical information to optimize the allocation, while meeting the

specified QoS requirements. This controller performs multi-objective optimization by

finding a new placement of VMs that minimizes the number of servers needed to serve

the workload, while limiting the number of VM migrations required to achieve the new

placement. The bound on the number of migrations is assumed to be set by the sys-

tem administrator depending on the acceptable VM migration overhead. The controller

places VMs according to their peak resource usage over the period since the previous

reallocation, which is set to 4 hours in the experimental study.

The reactive migration controller continuously monitors the resource utilization of

physical nodes and detects when the servers are overloaded or underloaded. In contrast

to the trace-based workload placement controller, it acts based on the real-time data on

the resource usage and adapts the allocation on a small scale (every minute). The objec-

tive of this controller is to rapidly respond to fluctuations in the workload. The controller

is parameterized by two utilization thresholds that determine overload and underload

conditions. An overload occurs when the utilization of the CPU or memory of the server

exceeds the given threshold. An underload occurs when the CPU or memory usage aver-

aged over all the physical nodes falls below the specified threshold. The threshold values

70 A Taxonomy and Survey of Energy-Efficient Computing Systems

are statically set according to the workload analysis and QoS requirements.

The authors proposed several policies based on different combinations of the de-

scribed optimization controllers with different utilization thresholds. The simulation-

based evaluation using 3 month workload traces from 138 SAP applications showed that

the best results can be achieved by applying both the optimization controllers simultane-

ously. The best policy invokes the workload placement controller every 4 hours, and also

when the servers are detected to be lightly utilized. The migration controller is executed

in parallel to tackle server underload and overload. The policy provides the minimal

CPU violation and requires 10-20% higher CPU capacity than the optimal solution.

GreenCloud: Energy-Efficient and SLA-based Management Cloud Resources

Buyya et al. [27] proposed the GreenCloud project aimed at the development of energy-

efficient provisioning of Cloud resources, while meeting QoS requirements defined by

the SLAs established through a negotiation between Cloud providers and consumers.

The project explored the problem of power-aware allocation of VMs in Cloud data cen-

ters for application services based on user QoS requirements such as deadline and budget

constraints [66]. The authors introduced a real-time virtual machine model. Under this

model, a Cloud provider provisions VMs for requested real-time applications and en-

sures meeting the specified deadline constraints.

The problem is addressed at several levels. At the first level, a user submits a request

to a resource broker for provisioning resources for an application consisting of a set of

subtasks with specified CPU and deadline requirements. The broker translates the spec-

ified resource requirements into a request for provisioning VMs and submits the request

to a number of Cloud data centers. The data centers return the price of provisioning VMs

for the request if the deadline requirement can be fulfilled. The broker chooses the data

center that provides the lowest price of resource provisioning. The selected data center’s

VM provisioner instantiates the requested VMs on the physical resources, followed by

launching the user applications.

The authors proposed three policies for scheduling real-time VMs in a data center

using DVFS to reduce energy consumption, while meeting the deadline constraints and

maximizing the request acceptance rate. The LowestDVS policy adjusts the P-state of the

2.4 The State of the Art in Energy-Efficient Computing Systems 71

CPU to the lowest level, ensuring that all the real-time VMs meet their deadlines. The

δ-Advanced-DVS policy over-scales the CPU speed up to δ% to increase the acceptance

rate. The Adaptive-DVS policy uses an M/M/1 queueing model to calculate the optimal

CPU speed if the arrival rate and service time of VMs can be estimated in advance.

The proposed approach was evaluated via simulations using the CloudSim toolkit [29].

The simulation results showed that the δ-Advanced-DVS provides the best performance

in terms of the profit per unit of the consumed power, as the CPU performance is auto-

matically adjusted according to the system load. The performance of the Adaptive-DVS

is limited by the simplified queueing model.

vManage: Loosely Coupled Platform and Virtualization Management in Data Centers

Kumar et al. [71] proposed an approach for dynamic VM consolidation based on an es-

timation of “stability” – the probability that a proposed VM reallocation will remain ef-

fective for some time in the future. The approach implements policies for integrated

VM placement considering both VM requirements including CPU, memory, and network

constraints, as well as platform requirements, such as power budget. Predictions of fu-

ture resource demands of applications are computed using a time-varying probability

density function. It is assumed that the parameters of the distribution, such as the mean

and standard deviation, are known a priori.

The authors suggested that the distribution parameter values can be obtained us-

ing offline profiling of applications and online calibration. However, offline profiling

is unrealistic for Infrastructure as a Service (IaaS) environments, where the provider is

not aware of the application deployed in the VMs by the users. Moreover, the authors

assume that the resource utilization follows a normal distribution, whereas numerous

studies [10, 45, 75] showed that the resource usage by applications is more complex and

cannot be modeled using simple probability distributions. The experimental evaluation

on a Xen-based infrastructure hosting 28 VMs serving a mixed workload showed that

the approach reduces power consumption by 10%, provides 71% less SLA violations,

and migrates 54% fewer VMs compared with the benchmark system.

72 A Taxonomy and Survey of Energy-Efficient Computing Systems

2.5 Thesis Scope and Positioning

This thesis investigates energy-efficient dynamic VM consolidation under QoS constraints

applied in virtualized data centers containing heterogeneous physical resources. The

goal is to minimize energy consumption by dynamically switching servers to the sleep

mode, as energy consumption is the major component of operating costs. Moreover, en-

ergy consumption causes CO2 emissions to the environment, thus reducing energy con-

sumption consequently reduces CO2 emissions. In addition to dynamically deactivating

servers, the approach can be transparently combined with the existing OS level DVFS

solutions, such as the on-demand governor of the Linux kernel.

This work focuses on IaaS Cloud environments, e.g., Amazon EC2, where multiple in-

dependent users dynamically provision VMs and deploy various types of applications.

Moreover, the Cloud provider is not aware of workloads that are executed in the VMs;

therefore, the resource management system has to be application agnostic, i.e., able to

handle arbitrary workloads. Since multiple types of applications can coexist in the sys-

tem and share physical resources, there is a challenge of defining QoS requirements in a

workload independent manner. In other words, QoS metrics, such as response time and

throughput, are unsuitable, as their definition is application-specific. A workload inde-

pendent QoS metric is required for defining QoS requirements in the SLAs to constrain

the degree of VM consolidation and acceptable performance degradation.

To gain the most benefits of dynamic VM consolidation it is necessary to oversub-

scribe system resources, such as the CPU. This allows the system to leverage fluctuations

in the resource consumption by VMs and achieve higher levels of utilization. However,

resource oversubscription is risky from the QoS perspective, as it may lead to perfor-

mance degradation of applications when the resource demand increases.

The approach proposed in this thesis oversubscribes the server CPUs by taking ad-

vantage of information on the real-time CPU utilization; however, it does not overcom-

mit RAM. In this work, the maximum amount of RAM that can be consumed by a VM

is used as a constraint when placing VMs on servers. One of the reasons for that is that

RAM is a more critical resource compared with the CPU, as an application may fail due

to insufficient RAM, whereas insufficiency CPU may just slow down the execution of the

application. Another reason is that in contrast to the CPU, RAM usually does not be-

2.5 Thesis Scope and Positioning 73

Table 2.4: The thesis scope

Characteristic Thesis scope

Virtualization Virtualized data centers
System resources Multiple resources: CPU, RAM
Target systems Heterogeneous IaaS Clouds
Goal Minimize energy consumption under performance constraints
Power saving techniques DVFS, dynamic VM consolidation, server power switching
Workload Arbitrary mixed workloads
Architecture Distributed dynamic VM consolidation system

come a bottleneck resource, and therefore, does not limit the number of VMs that can be

instantiated on a server, as shown in the literature [4, 107].

Another aspect distinguishing the work presented in this thesis compared with the

related research is the distributed architecture of the VM management system. A dis-

tributed VM management system is essential for large-scale Cloud providers, as it en-

ables the natural scaling of the system when new compute nodes are added. An illus-

tration of the importance of scalability is the fact that Rackspace, a well-known IaaS

provider, has increased the total server count in the second quarter of 2012 to 84,978

up from 82,438 servers at the end of the first quarter [99]. Another benefit of making the

VM management system distributed is the improved fault tolerance by eliminating sin-

gle points of failure: even if a compute or controller node fails, it would not render the

whole system inoperable.

There are a few related works reviewed in this chapter that are close to the proposed

research direction, which are, however, different in one or more aspects. Approaches

to dynamic VM consolidation proposed Kusic et al. [72] and Stillwell et al. [110] are

application-specific, whereas the approach proposed in this thesis is application-agnostic,

which is suitable for the IaaS model. Verma et al. [119] focused on static and semi-static

VM consolidation techniques, as these types of consolidation are easier to implement in

an enterprise environment. In contrast, this thesis investigates the problem of dynamic

consolidation to take advantage of ne-grained workload variations. Other solutions pro-

posed in the literature are centralized and do not have a direct way of controlling the

QoS [55, 71, 86], which are essential characteristics for the next generation data centers

and Cloud computing systems. The scope of this thesis is summarized in Table 2.4.

74 A Taxonomy and Survey of Energy-Efficient Computing Systems

2.6 Conclusions

In recent years, energy efficiency has emerged as one of the most important design re-

quirements for modern computing systems, ranging from single servers to data centers

and Clouds, as they continue to consume enormous amounts of electrical power. Apart

from high operating costs incurred by computing resources, this leads to significant emis-

sions of CO2 into the environment. For example, currently, IT infrastructures contribute

about 2% of the total CO2 footprints. Unless energy-efficient techniques and algorithms

to manage computing resources are developed, IT’s contribution in the world’s energy

consumption and CO2 emissions is expected to rapidly grow. This is obviously unaccept-

able in the age of climate change and global warming. To facilitate further developments

in the area, it is essential to survey and review the existing body of knowledge. This

chapter presented a taxonomy and survey of various ways to improve power and energy

efficiency in computing systems. Recent research advancements have been discussed and

classified across the hardware, OS, virtualization, and data center levels.

It has been shown that intelligent management of computing resources can lead to

a significant reduction of energy consumption by a system, while still meeting perfor-

mance requirements. One of the significant advancements that have facilitated the progress

in managing compute servers is the implementation of the ability to dynamically adjust

the voltage and frequency of the CPU (DVFS), followed by the subsequent introduction

and implementation of ACPI. These technologies have enabled the run-time software

control over power consumption by the CPU traded for the performance. This chapter

presented various approaches to controlling power consumption by hardware from the

OS level applying DVFS and other power saving techniques and algorithms.

Virtualization has further advanced the area by introducing the ability to encapsulate

the workload in VMs and consolidate multiple VMs to a single physical server, while

providing fault and performance isolation between individual VMs. Consolidation has

become especially effective after the adoption of multi-core CPUs allowing multiple VMs

to be independently executed on a server leading to the improved utilization of resources

and reduced energy consumption. Besides consolidation, leading virtualization vendors

(i.e., Xen, VMware) similarly to the Linux OS implement continuous DVFS.

The power management problem becomes more complicated when considered at the

2.6 Conclusions 75

data center level. At this level, the system is represented by a set of interconnected com-

pute nodes that need to be managed as a single resource in order to optimize their energy

consumption. Efficient resource management is extremely important for data centers and

Cloud computing systems comprising multiple compute nodes: due to a low average uti-

lization of resources, the cost of energy consumed by the compute nodes and supporting

infrastructure (e.g., cooling systems, power supplies, PDU) leads to an inappropriately

high TCO. This chapter classified and discussed a number of recent research works that

deal with the problem of energy-efficient resource management in non-virtualized and

virtualized data centers.

Due to a narrow dynamic power range of servers, the most efficient power saving

technique is consolidation of the workload to fewer physical servers combined with

switching the idle servers off. This technique improves the utilization of resources and

eliminates the static power consumed by idle servers, which accounts for up to 70% of

the power consumed by fully utilized servers. In virtualized environments and Clouds,

live and offline VM migration offered by virtualization have enabled the technique of

dynamic VM consolidation leveraging workload variability. However, VM migration

leads to energy and performance overheads requiring a careful analysis and intelligent

techniques to eliminate non-productive migrations.

This chapter has concluded with a discussion of the scope and positioning of the

current thesis in the context of the presented taxonomy and reviewed research. The

proposed research direction of this thesis is energy-efficient distributed dynamic VM

consolidation under performance constraints in IaaS Clouds. Nevertheless, there are

many other open research challenges in energy-efficient computing that are becoming

even more prominent in the age of Cloud computing – some of them are discussed in

Chapter 7.

Chapter 3

Competitive Analysis of Online
Algorithms for Dynamic VM

Consolidation

Prior to designing new algorithms for dynamic VM consolidation, it is important to attempt a

theoretical analysis of potential optimal algorithms. One of the aspects of dynamic VM consolidation

is that due to the variability of workloads experienced by modern applications, the VM placement

needs to be optimized continuously in an online manner. This chapter formally defines the single VM

migration and dynamic VM consolidation problems. To understand the implications of the online

nature of the problem, competitive analysis of optimal online deterministic algorithms for the defined

problems and proofs of their competitive ratios are conducted and presented.

3.1 Introduction

THIS chapter presents an analysis of the cost and performance characteristics of on-

line algorithms for the problem of energy and performance efficient dynamic VM

consolidation. First, the chapter discusses a simplified problem of determining the time

to migrate a VM from an oversubscribed host to minimize the cost consisting of the cost of

energy consumption and the cost incurred by the Cloud provider due to a violation of the

QoS requirements defined in the SLAs. Next, the cost of an optimal offline algorithm for

this problem, as well as the competitive ratio of an optimal online deterministic algorithm

are determined and proved. Then, a more complex problem of dynamic consolidation of

VMs considering multiple hosts and multiple VMs is investigated. The competitive ratio

of an optimal online deterministic algorithm for this problem is proved and presented.

As discussed in Chapter 2, most of the related approaches to energy-efficient resource

management in virtualized data centers constitute “systems” work focusing more on the

77

78 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation

implementation aspect rather than theoretical analysis. However, theoretical analysis of

algorithms is important since it provides provable guarantees on the algorithm perfor-

mance, as well as insights into the future algorithm design.

Recent analytic work on reducing the cost of energy consumption in data centers in-

cludes online algorithms for load balancing across geographically distributed data cen-

ters [76, 78]. In contrast, the focus of this work is on energy and performance efficient

VM management within a data center. Plaxton et al. [98] analyzed online algorithms for

resource allocation for a sequence of requests arriving to a data center. Irani et al. [62] pro-

posed and proved the competitiveness of an online algorithm for dynamic power man-

agement of a server with multiple power states. Lin et al. [77] proposed a 3-competitive

algorithm for request distribution over the servers of a data center to provide power-

proportionality, i.e., power consumption by the resources in proportion to the load.

This work differs from the prior analytic literature in the way the system and work-

load are modeled. Rather than modeling the workload as a sequence of arriving requests,

this work is based on an IaaS-like model, where a set of independent long-running ap-

plications of different types share the computing resources. Each application generates

time-varying CPU utilization and is deployed on a VM, which can be migrated across

physical servers transparently for the application. This model is a representation of an

IaaS Cloud, where multiple independent users instantiate VMs, and the provider is not

aware of the types of applications deployed on the VMs. No results have been found to

be published on competitive analysis of online algorithms for the problem of energy and

performance efficient dynamic consolidation of VMs in such environments.

In the definition and analysis of the problems in this chapter, it is assumed that fu-

ture events cannot be predicted based on the knowledge of past events. Although this

assumption may not be satisfied for all types of real-world workloads, it enables the the-

oretical analysis of algorithms that do not rely on predictions of the future workload.

Moreover, the higher the variability of the workloads, the closer they are to satisfying

the unpredictability assumption. Since Cloud applications usually experience highly dy-

namic workloads, the unpredictability assumption is justifiable.

The key contributions of this chapter are the following.

1. Formal definitions of the single VM migration and dynamic VM consolidation

3.2 Background on Competitive Analysis 79

problems.

2. A proof of the cost incurred by an optimal offline algorithm for the single VM

migration problem.

3. Competitive analysis and proofs of the competitive ratios of optimal online deter-

ministic algorithms for the single VM migration and dynamic VM consolidation

problems.

The remainder of this chapter is organized as follows. Section 3.2 provides back-

ground information on competitive analysis. Sections 3.3 and 3.4 present a thorough

analysis of the single VM migration and dynamic VM consolidation problems respec-

tively. The chapter is concluded with a summary and discussion of future research direc-

tions in Section 3.5.

3.2 Background on Competitive Analysis

In a real world setting, a control algorithm does not have the complete knowledge of

future events, and therefore, has to deal with an online problem. According to Borodin and

El-Yaniv [25], optimization problems in which the input is received in an online manner

and in which the output must be produced online are called online problems. Algorithms

that are designed for online problems are called online algorithms. One of the ways to

characterize the performance and efficiency of online algorithms is to apply competitive

analysis. In the framework of competitive analysis, the quality of online algorithms is

measured relatively to the best possible performance of algorithms that have complete

knowledge of the future. An online algorithm ALG is c-competitive if there is a constant

a, such that for all finite sequences I:

ALG(I) ≤ c ·OPT(I) + a, (3.1)

where ALG(I) is the cost incurred by ALG for the input I; OPT(I) is the cost of an opti-

mal offline algorithm for the input sequence I; and a is a constant. This means that for all

possible inputs, ALG incurs a cost within the constant factor c of the optimal offline cost

plus a constant a. c can be a function of the problem parameters, but it must be indepen-

dent of the input I. If ALG is c-competitive, it is said that ALG attains a competitive ratio c.

80 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation

In competitive analysis, an online deterministic algorithm is analyzed against the input

generated by an omnipotent malicious adversary. Based on the knowledge of the online

algorithm, the adversary generates the worst possible input for the online algorithm, i.e.

the input that maximizes the competitive ratio. An algorithm’s configuration is the algo-

rithm’s state with respect to the outside world, which should not be confused with the

algorithm’s internal state consisting of its control and internal memory.

3.3 The Single VM Migration Problem

This section applies competitive analysis [25] to analyze a sub-problem of the problem

of energy and performance efficient dynamic consolidation of VMs. There is a single

physical server, or host, and M VMs allocated to that host. In this problem the time is

discrete and can be split into N time frames, where each time frame is 1 second. The

resource provider pays the cost of energy consumed by the physical server. It is calcu-

lated as Cptp, where Cp is the cost of power (i.e. energy per unit of time), and tp is a time

period. The resource capacity of the host and resource usage by VMs are characterized

by a single parameter, the CPU performance.

The VMs experience dynamic workloads, which means that the CPU usage by a VM

arbitrarily varies over time. The host is oversubscribed, i.e. if all the VMs request their

maximum allowed CPU performance, the total CPU demand will exceed the capacity

of the CPU. It is defined that when the demand of the CPU performance exceeds the

available capacity, a violation of the SLAs established between the resource provider and

customers occurs. An SLA violation results in a penalty incurred by the provider, which

is calculated as Cvtv, where Cv is the cost of SLA violation per unit of time, and tv is

the time duration of the SLA violation. Since it is necessary to represent the relative

difference between Cp and Cv, without loss of generality, the following relations can be

defined: Cp = 1 and Cv = s, where s ∈ R+. This is equivalent to defining Cp = 1/s and

Cv = 1.

At some point in time v, an SLA violation occurs and continues until N. In other

words, due to the over-subscription and variability of the workload experienced by VMs,

at the time v the overall demand for the CPU performance exceeds the available CPU

3.3 The Single VM Migration Problem 81

capacity and does not decrease until N. It is assumed that according to the problem

definition, a single VM can be migrated out from the host. This migration decreases the

CPU performance demand and makes it lower than the available CPU capacity.

Let n be the stopping time, which is equal to the latest of either the end of the VM

migration or the beginning of the SLA violation. A VM migration takes time T. During

a migration an extra host is used to accommodate the VM being migrated, and therefore,

the total energy consumed during a VM migration is 2CpT. The problem is to determine

the time m when a VM migration should be initiated to minimize the total cost consisting

of the energy cost and the cost caused by an SLA violation if it takes place. Let r be the

remaining time since the beginning of the SLA violation, i.e. r = n− v.

3.3.1 The Cost Function

To analyze the problem, a cost function is defined as follows. The total cost includes

the cost caused by the SLA violation and the cost of the extra energy consumption. The

extra energy consumption is the energy consumed by the destination host, where a VM

is migrated to, and the energy consumed by the source host after the beginning of the

SLA violation. In other words, all the energy consumption is taken into account except

for the energy consumed by the source host from t0 (the starting time) to v. The reason is

that this part of energy cannot be eliminated by any algorithm by the problem definition.

Another restriction is that the SLA violation cannot occur until a migration starting at t0

can be finished, i.e. v > T. According to the problem statement, the cost function C(v, m)

is defined as shown in (3.2).

C(v, m) =

(v−m)Cp if m < v, v−m ≥ T,

(v−m)Cp + 2(m− v + T)Cp + (m− v + T)Cv if m ≤ v, v−m < T,

rCp + (r−m + v)Cp + rCv if m > v.

(3.2)

The cost function C defines three cases, which cover all possible relationships between

v and m. The cases of (3.2) are denoted by C1, C2, and C3 respectively.

1. C1 describes the case when the migration occurs before the occurrence of the SLA

violation (m < v), but the migration starts not later than T before the beginning of

82 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation

the SLA violation (v−m ≥ T). In this case the cost is just (v−m)Cp, i.e. the cost

of energy consumed by the extra host from the beginning of the VM migration to

the beginning of the potential SLA violation. There is no cost of SLA violation, as

according to the problem statement the stopping time is exactly the beginning of

the potential SLA violation, so the duration of the SLA violation is 0.

2. C2 describes the case when the migration occurs before the occurrence of the SLA

violation (m ≤ v), but the migration starts later than T before the beginning of

the SLA violation (v − m < T). C2 contains three terms: (a) (v − m)Cp, the cost

of energy consumed by the extra host from the beginning of the migration to the

beginning of the SLA violation; (b) 2(m− v + T)Cp, the cost of energy consumed

by both the main host and the extra host from the beginning of the SLA violation

to n; (c) (m− v+ T)Cv, the cost of the SLA violation from the beginning of the SLA

violation to the end of the VM migration.

3. C3 describes the case when the migration starts after the beginning of the SLA

violation. In this case the cost consists of three terms: (a) rCp, the cost of energy

consumed by the main host from the beginning of the SLA violation to n; (b) (r−

m + v)Cp, the cost of energy consumed by the extra host from the beginning of

the VM migration to n; (c) rCv, the cost of SLA violation from the beginning of the

SLA violation to n.

The next section presents analysis of the cost of an optimal offline algorithm for the

single VM migration problem based on the defined cost function.

3.3.2 The Cost of an Optimal Offline Algorithm

Theorem 3.1. An optimal offline algorithm for the single VM migration problem incurs the cost

of T
s , and is achieved when v−m

T = 1.

Proof. To find the cost incurred by an optimal offline algorithm, the range of the cost func-

tion for the domain of all possible algorithms is analyzed. The quality of an algorithm

for this problem depends of the relation between v and m, i.e. on the difference between

the time when the VM migration is initiated by the algorithm and the time when the SLA

violation starts. It is possible to define v−m = aT, where a ∈ R. Therefore, m = v− aT,

and a = v−m
T . Further, the three cases defined by the cost function (3.2) are analyzed.

3.3 The Single VM Migration Problem 83

1. m < v, v−m ≥ T. Thus, aT ≥ T and a ≥ 1. By the substitution of m = v− aT in

the first case of (3.2), (3.3) is obtained.

C1(v, a) = (v− v + aT)Cp = aTCp (3.3)

2. m ≤ v, v − m < T. Thus, a ≥ 0 and aT < T. Therefore, 0 ≤ a < 1. By the

substitution of m = v− aT in the second case of (3.2), (3.4) is obtained.

C2(v, a) = (v− v + aT)Cp + 2(v− aT − v + T)Cp + (v− aT − v + T)Cv

= aTCp + 2T(1− a)Cp + T(1− a)Cv

= T(2− a)Cp + T(1− a)Cv

(3.4)

3. m > v. Thus, a < 0. By simplifying the third case of (3.2), (3.5) is obtained.

C3(v, m) = rCp + (r−m + v)Cp + rCv

= (2r−m + v)Cp + rCv

(3.5)

For this case, r is the time from the beginning of the SLA violation to the end of

the migration. Therefore, r = m− v + T. By the substitution of m, r = T(1− a) is

obtained. By the substitution of m and r in (3.5), (3.6) is derived.

C3(v, a) = (2T − 2aT − v + aT + v)Cp + T(1− a)Cv

= T(2− a)Cp + T(1− a)Cv

= C2(v, a)

(3.6)

Since C3(v, a) = C2(v, a), the function can be simplified to just two case. Both cases

are linear in a and do not depend on v (3.7).

C(a) =

T(2− a)Cp + T(1− a)Cv if a < 1,

aTCp if a ≥ 1.
(3.7)

According to the problem definition, the following substitutions can be made: Cp =

1/s and Cv = 1 (3.8).

84 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation

C(a) =

T(2−a)

s + T(1− a) if a < 1,

aT
s if a ≥ 1.

(3.8)

It is clear that (3.8) reaches its minimum T
s at a = 1, i.e. when m = v− T. This solution

corresponds to an algorithm that always initiates the VM migration exactly at m = v− T.

Such an algorithm must have perfect knowledge of the time when the SLA violation will

occur before it actually occurs. An algorithm that satisfies this requirement is an optimal

offline algorithm for the single VM migration problem.

3.3.3 An Optimal Online Deterministic Algorithm

The analysis of the single VM migration problem is continued with finding an optimal

online deterministic algorithm and its competitive ratio.

Theorem 3.2. The competitive ratio of an optimal online deterministic algorithm for the single

VM migration problem is 2 + s, and the algorithm is achieved when m = v.

Proof. Using the cost function found in Theorem 3.1, the competitive ratio of any online

algorithm is defined as in (3.9).

ALG(I)
OPT(I)

=

T(2−a)+sT(1−a)

s · s
T = 2 + s− a(1 + s) if a < 1,

aT
s ·

s
T = a if a ≥ 1,

(3.9)

where a = v−m
T . The configuration of any online algorithm for the single VM migration

problem is the current time i; the knowledge of whether an SLA violation is in place; and

v if i ≥ v. Therefore, there are two possible classes of online deterministic algorithms for

this problem:

1. Algorithms ALG1 that define m as a function of i, i.e. m = f (i) and a = v− f (i)
T .

2. Algorithms ALG2 that define m as a function of v, i.e. m = g(v) and a = v−g(v)
T .

For algorithms from the first class, a can grow arbitrarily large, as m is not a function

of v, and the adversary will select v such that it is infinitely greater than f (i). As a → ∞,
ALG1(I)
OPT(I) → ∞; therefore, all algorithms from the first class are not competitive.

3.4 The Dynamic VM Consolidation Problem 85

For the second class, m ≥ v, as m is a function of v, and v becomes known for an online

algorithm when i = v. Therefore ALG2(I)
OPT(I) = 2 + s− a(1 + s), where a ≤ 0. The minimum

competitive ratio of 2 + s is obtained at a = 0. Thus, an optimal online deterministic

algorithm for the single VM migration problem is achieved when a = 0, or equivalently

m = v, and its competitive ratio is 2 + s.

An optimal online deterministic algorithm for the single VM migration problem can

be implemented by monitoring the state of the host and migrating a VM as soon as an

SLA violation is detected.

3.4 The Dynamic VM Consolidation Problem

This section analyzes a more complex problem of dynamic VM consolidation considering

multiple hosts and multiple VMs. For this problem, it is defined that there are n homo-

geneous hosts, and the capacity of each host is Ah. Although VMs experience variable

workloads, the maximum CPU capacity that can be allocated to a VM is Av. Therefore,

the maximum number of VMs allocated to a host when they demand their maximum

CPU capacity is m = Ah
Av

. The total number of VMs is nm. VMs can be migrated between

hosts using live migration with a migration time tm. As for the single VM migration

problem defined in Section 3.3, an SLA violation occurs when the total demand for the

CPU performance exceeds the available CPU capacity Ah. The cost of power is Cp, and

the cost of SLA violation per unit of time is Cv. Without loss of generality, the following

relations can be defined: Cp = 1 and Cv = s, where s ∈ R+. This is equivalent to defining

Cp = 1/s and Cv = 1. It is assumed that when a host is idle, i.e. there are no allocated

VMs, it is switched off and consumes no power, or switched to the sleep mode with neg-

ligible power consumption. Non-idle hosts are referred to as active. The total cost C is

defined as follows:

C =
T

∑
t=t0

(
Cp

n

∑
i=0

ati + Cv

n

∑
j=0

vtj

)
, (3.10)

where t0 is the initial time; T is the total time; ati ∈ {0, 1} indicating whether the host i

86 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation

is active at the time t; vtj ∈ {0, 1} indicating whether the host j is experiencing an SLA

violation at the time t. The problem is to determine what time, which VMs and where

should be migrated to minimize the total cost C.

3.4.1 An Optimal Online Deterministic Algorithm

Theorem 3.3. The upper bound of the competitive ratio of an optimal online deterministic algo-

rithm for the dynamic VM consolidation problem is ALG(I)
OPT(I) ≤ 1 + ms

2(m+1) .

Proof. Similarly to the single VM migration problem, an optimal online deterministic al-

gorithm for the dynamic VM consolidation problem migrates a VM from a host when an

SLA violation occurs at this host. The algorithm always consolidates VMs to the mini-

mum number of hosts, ensuring that the allocation does not cause an SLA violation. The

omnipotent malicious adversary generates the CPU demand by VMs in a way that cause

as much SLA violation as possible , while keeping as many hosts active (consuming en-

ergy) as possible.

As mAv = Ah, for any k > m, k ∈ N, kAv > Ah. In other words, an SLA violation

occurs at a host when at least m + 1 VMs are allocated to this host, and these VMs de-

mand their maximum CPU capacity Av. Therefore, the maximum number of hosts that

experience an SLA violation simultaneously nv is defined as in (3.11).

nv =

⌊
nm

m + 1

⌋
. (3.11)

In a case of a simultaneous SLA violation at nv hosts, the number of hosts not expe-

riencing an SLA violation is nr = n − nv. The strategy of the adversary is to make the

online algorithm keep all the hosts active all the time and make nv hosts experience an

SLA violation half of the time. To show how this is achieved, the time is split into periods

of length 2tm. Then T − t0 = 2tmτ, where τ ∈ R+. Each of these periods can be split into

two equal parts of length tm. For these two parts of each period, the adversary acts as

follows:

1. During the first tm, the adversary sets the CPU demand by the VMs in a way to

allocate exactly m + 1 VMs to nv hosts by migrating VMs from nr hosts. As the

VM migration time is tm, the total cost during this period of time is tmnCp, as all

3.4 The Dynamic VM Consolidation Problem 87

the hosts are active during migrations, and there is no SLA violation.

2. During the next tm, the adversary sets the CPU demand by the VMs to the maxi-

mum causing an SLA violation at nv hosts. The online algorithm reacts to the SLA

violation, and migrates the necessary number of VMs back to nr hosts. During this

period of time, the total cost is tm(nCp + nvCv), as all the hosts are again active, and

nv hosts are experiencing an SLA violation.

Therefore, the total cost during a time period 2tm is defined as follows:

C = 2tmnCp + tmnvCv. (3.12)

This leads to the following total cost incurred by an optimal online deterministic al-

gorithm (ALG) for the input I:

ALG(I) = τtm(2nCp + nvCv). (3.13)

An optimal offline algorithm for this kind of workload will just keep m VMs at each

host all the time without any migrations. Thus, the total cost incurred by an optimal

offline algorithm is defined as shown in (3.14).

OPT(I) = 2τtmnCp. (3.14)

Having determined both costs, the competitive ratio of an optimal online determinis-

tic algorithm can be derived (3.15).

ALG(I)
OPT(I)

=
τtm(2nCp + nvCv)

2τtmnCp
=

2nCp + nvCv

2nCp
= 1 +

nvCv

2nCp
. (3.15)

Via the substitution of Cp = 1/s and Cv = 1, (3.16) is obtained.

ALG(I)
OPT(I)

= 1 +
nvs
2n

. (3.16)

First, consider the case when mod nm
m+1 = 0, and thus nv = nm

m+1 . For this case

(ALG1(I)) the competitive ratio is shown in (3.17).

ALG1(I)
OPT(I)

= 1 +
nms

2n(m + 1)
= 1 +

ms
2(m + 1)

. (3.17)

88 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation

The second case (ALG2(I)) is when mod nm
m+1 6= 0. Then, due to the remainder, nv is

less than in the first case. Therefore, the competitive ratio is defined as in (3.18).

ALG2(I)
OPT(I)

< 1 +
ms

2(m + 1)
. (3.18)

If both cases are combined, the competitive ratio can be defined as in (3.19), which is

an upper bound on the competitive ratio of an optimal online deterministic algorithm for

the dynamic VM consolidation problem.

ALG(I)
OPT(I)

≤ 1 +
ms

2(m + 1)
. (3.19)

3.5 Conclusions

This chapter presented proofs of competitive ratios of online deterministic algorithms

for the single VM migration and dynamic VM consolidation problems. However, it is

known that non-deterministic, or randomized, online algorithms typically improve upon

the quality of their deterministic counterparts [39]. Therefore, it can be expected that the

competitive ratio of online randomized algorithms for the single VM migration problem

(Section 3.3), which falls back to an optimal online deterministic algorithm when i ≥ v,

lies between T
s and 2 + s. Similarly, it can be expected that the competitive ratio of online

randomized algorithms for the dynamic VM consolidation problem should be improved

relatively to the upper bound determined in Theorem 3.3. In competitive analysis, ran-

domized algorithms are analyzed against different types of adversaries than the omnipo-

tent malicious adversary used for deterministic algorithms. For example, one of these

adversaries is the oblivious adversary that generates a complete input sequence prior to

the beginning of the algorithm execution. It generates an input based on knowledge of

probability distributions used by the algorithm.

Another approach to analyzing randomized algorithms is finding the average-case

performance of an algorithm based on distributional models of the input. However, in

a real world setting, the workload experienced by VMs is more complex and cannot

3.5 Conclusions 89

be modeled using simple statistical distributions [10]. For example, it has been shown

that web workloads have such properties as correlation between workload attributes,

non-stationarity, burstiness, and self-similarity [45]. Job arrival times in Grid and clus-

ter workloads have been identified to exhibit such patterns as pseudo-periodicity, long

range dependency, and multifractal scaling [75]. In other words, focusing on real-world

workloads requires lifting the unpredictability assumption stated in the introduction, as

in practice often there are interrelations between subsequent workload states.

The next chapter presents adaptive algorithms that rely on statistical analysis of his-

torical data of the workload to leverage the property of workload predictability. One

of the assumptions is that workloads are not completely random, and future events can

be predicted based on the past data. However, such algorithms cannot be analyzed us-

ing simple distributional or adversary models, such as oblivious adversary, as realistic

workloads require more complex modeling, e.g. using Markov chains [105]. A workload

model based on Markov chains is investigated in Chapter 5.

Chapter 4

Heuristics for Distributed Dynamic
VM Consolidation

This chapter presents a distributed approach to energy and performance efficient dynamic VM con-

solidation. In this approach, resource managers deployed on the compute hosts locally determine when

and which VMs to migrate from the hosts in cases of underload and overload conditions, whereas the

placement of VMs selected for migration is done by a global manager, which can potentially be repli-

cated. The chapter continues with an introduction of heuristics for dynamic VM consolidation based

on the proposed approach, which significantly reduce energy consumption, while ensuring a high level

of adherence to Service Level Agreements (SLAs). The high efficiency of the proposed algorithms is

shown by extensive simulations using workload traces from more than a thousand PlanetLab VMs.

4.1 Introduction

AS indicated in the previous chapter, real-world workloads exhibit the properties

of correlation between workload attributes, self-similarity, and long range depen-

dency [45, 75], which enable forecasting of future system states based on the knowledge

of the observed past states. This chapter presents a set of heuristics for the problem

of energy and performance efficient dynamic VM consolidation, which apply statistical

analysis of the observed history of system behavior to infer potential future states. The

proposed algorithms consolidate and deconsolidate VMs when needed to minimize en-

ergy consumption by computing resources under QoS constraints.

The target compute environment is an Infrastructure as a Service (IaaS), e.g., Amazon

EC2, where the provider is unaware of applications and workloads served by the VMs,

and can only observe them from outside. Due to this property, IaaS environments are

referred as being application-agnostic. The proposed approach to dynamic VM consoli-

91

92 Heuristics for Distributed Dynamic VM Consolidation

dation consists in splitting the problem into 4 sub-problems:

1. Deciding if a host is considered to be underloaded, so that all VMs should be

migrated from it, and the host should be switched to a low-power mode.

2. Deciding if a host is considered to be overloaded, so that some VMs should be

migrated from it to other active or reactivated hosts to avoid violating the QoS

requirements.

3. Selecting VMs to migrate from an overloaded host.

4. Placing VMs selected for migration on other active or reactivated hosts.

This approach has two major advantages compared with traditional VM consolida-

tion algorithms discussed in Chapter 2: (1) splitting the problem simplifies the analytic

treatment of the sub-problems; and (2) the approach can be implemented in a distributed

manner by executing the underload / overload detection and VM selection algorithms

on compute hosts, and the VM placement algorithm on replicated controller hosts. Dis-

tributed VM consolidation algorithms enable the natural scaling of the system when new

compute hosts are added, which is essential for large-scale Cloud providers.

An illustration of the importance of scalability is the fact that Rackspace, a well-

known IaaS provider, has increased the total server count in the second quarter of 2012

to 84,978 up from 82,438 servers at the end of the first quarter [99]. Another benefit

of making VM consolidation algorithms distributed is the improved fault tolerance by

eliminating single points of failure: even if a compute or controller host fails, it would

not render the whole system inoperable.

In contrast to the studies discussed in Chapter 2, the proposed heuristics efficiently

implement dynamic VM consolidation in a distributed manner according to the current

utilization of resources applying live migration, switching idle nodes to the sleep mode,

and thus, minimizing energy consumption. The proposed approach can effectively ad-

here to strict QoS requirements, as well as handle multi-core CPU architectures, hetero-

geneous infrastructure and heterogeneous VMs.

The proposed algorithms are evaluated by extensive simulations using the CloudSim

simulation toolkit [29] and data on the CPU utilization by more than a thousand Planet-

Lab VMs collected every 5 minutes during 10 randomly selected days in March and April

2011 [92]. According to the results of experiments, the proposed algorithms significantly

4.2 The System Model 93

reduce energy consumption, while providing a high level of adherence to the SLAs.

The key contributions of this chapter are the following.

1. The introduction of a distributed approach to energy and performance efficient

dynamic VM consolidation.

2. Novel heuristics for the problem of energy and performance efficient dynamic VM

consolidation following the introduced distributed approach.

3. An extensive simulation-based evaluation and performance analysis of the pro-

posed algorithms.

The remainder of the paper is organized as follows. The next section introduces the

system model used in the design of heuristics for dynamic VM consolidation. The pro-

posed heuristics are presented in Section 4.3, followed by an evaluation and analysis of

the obtained experimental results in Section 4.4. The chapter is concluded with Section 4.5

providing a summary of results and contributions.

4.2 The System Model

The target system is an IaaS environment, represented by a large-scale data center con-

sisting of N heterogeneous physical nodes. Each node i is characterized by the CPU

performance defined in Millions Instructions Per Second (MIPS), amount of RAM and

network bandwidth. The servers do not have direct-attached storage, while the storage

is provided by a Network Attached Storage (NAS) or Storage Area Network (SAN) to

enable VM live migration. The type of the environment implies no knowledge of appli-

cation workloads and time for which VMs are provisioned. In other words, the resource

management system must be application-agnostic.

Multiple independent users submit requests for provisioning of M heterogeneous

VMs characterized by requirements to the processing power defined in MIPS, amount

of RAM and network bandwidth. The fact that the VMs are owned and managed by

independent users implies that the resulting workload created by consolidating multiple

VMs on a single physical node is mixed. The mixed workload is formed by combining

various types of applications, such as HPC and web-applications, which utilize the re-

sources simultaneously. The users establish SLAs with the resource provider to formalize

94 Heuristics for Distributed Dynamic VM Consolidation

the QoS requirements. The provider pays a penalty in cases of SLA violations.

Physical node 1

VM 1 VM 2 VMM

Local Manager VMM

55

4

Physical node N

VM 1 VM 2 VMM

Local Manager VMM

55

4

Global Manager

2 3 2 3

... ...
5 5

1

Users

...

Figure 4.1: The system model

As mentioned earlier, the approach to dynamic VM consolidation proposed in this

chapter follows a distributed model, where the problem is divided into 4 sub-problems:

1. Host underload detection.

2. Host overload detection.

3. VM selection.

4. VM placement.

Splitting the problems improves the scalability of the system, as the host underload /

overload detection and VM placement algorithms are executed locally by each compute

host. It follows that the software layer of the system is tiered comprising local and global

managers (Figure 4.1). The local managers reside on each node as a module of the VMM.

Their objective is the continuous monitoring of the node’s CPU utilization, and detecting

host underload and overload conditions (4).

In case of a host overload, the local manager running on the overloaded host initiates

the configured VM selection algorithm to determine which VMs to offload from the host.

The global manager resides on the master node and collects information from the local

managers to maintain the overall view of the system’s resource utilization (2). Based

on the decisions made by the local managers, the global manager issues VM migration

commands to optimize the VM placement (3). VMMs perform actual migration of VMs

as well as changes in power modes of the nodes (5).

4.2 The System Model 95

4.2.1 Multi-Core CPU Architectures

It is assumed that physical servers are equipped with multi-core CPUs. A multi-core

CPU with n cores each having m MIPS is modeled as a single-core CPU with the total

capacity of nm MIPS. This is justified since applications, as well as VMs, are not tied

down to processing cores and can be executed on an arbitrary core using a time-shared

scheduling algorithm. The only limitation is that the capacity of each virtual CPU core

allocated to a VM must be less or equal to the capacity of a single physical CPU core.

The reason is that if the CPU capacity required for a virtual CPU core is higher than

the capacity of a single physical core, then a VM must be executed on more than one

physical core in parallel. However, automatic parallelization of VMs with a single virtual

CPU cannot be assumed.

4.2.2 The Power Model

Power consumption by computing nodes in data centers is mostly determined by the

CPU, memory, disk storage, power supplies and cooling systems [83]. As discussed in

Chapter 2, recent studies [44], [72] have shown that power consumption by servers can be

accurately described by a linear relationship between the power consumption and CPU

utilization, even when Dynamic Voltage and Frequency Scaling (DVFS) is applied. The

reason lies in the limited number of states that can be set to the frequency and voltage of

a CPU and the fact that voltage and performance scaling is not applied to other system

components, such as memory and network interfaces.

However, due to the proliferation of multi-core CPUs and virtualization, modern

servers are typically equipped with large amounts of memory, which begins to dominate

the power consumption by a server [83]. This fact combined with the difficulty of mod-

eling power consumption by modern multi-core CPUs makes building precise analytical

models a complex research problem. Therefore, instead of using an analytical model

of power consumption by a server, this work utilizes real data on power consumption

provided by the results of the SPECpower benchmark1.

Two server configurations with dual-core CPUs published in February 2011 have been

1The SPECpower benchmark. http://www.spec.org/power_ssj2008/

http://www.spec.org/power_ssj2008/

96 Heuristics for Distributed Dynamic VM Consolidation

Table 4.1: Power consumption by the selected servers at different load levels in Watts

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

selected: HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores × 1860 MHz, 4 GB), and HP

ProLiant ML110 G5 (Intel Xeon 3075, 2 cores × 2660 MHz, 4 GB). The configuration and

power consumption characteristics of the selected servers are shown in Table 4.1. The

reason why servers with more cores were not chosen is that it is important to simulate

a large number of servers to evaluate the effect of VM consolidation. Thus, simulating

less powerful CPUs is advantageous, as lighter workload is required to overload a server.

Nevertheless, dual-core CPUs are sufficient to show how multi-core CPUs are handled

by the proposed algorithms.

4.2.3 The Cost of VM Live Migration

Live migration of VMs allows transferring a VM between physical nodes without sus-

pension and with a short downtime. However, live migration has a negative impact on

the performance of applications running in a VM during a migration. Voorsluys et al.

have performed an experimental study to investigate the value of this impact and find a

way to model it [122]. They found that performance degradation and downtime depend

on the application behavior, i.e., how many memory pages the application updates dur-

ing its execution. However, for the class of applications with dynamic workloads, such

as web-applications, the average performance degradation including the downtime can

be estimated as approximately 10% of the CPU utilization.

In addition, it is required to model the resource consumption by the VM being mi-

grated on the destination node. It follows that each VM migration may cause an SLA

violation; therefore, it is crucial to minimize the number of VM migrations. The length of

a live migration depends on the total amount of memory used by the VM and available

network bandwidth. This model is justified since the images and data of VMs are stored

on a shared storage accessible over the network, which is required to enable live migra-

tion; therefore, copying the VM’s storage is not required. Thus, to simplify the model,

4.2 The System Model 97

the migration time and performance degradation experienced by a VM j are estimated as

shown in (4.1).

Tmj =
Mj

Bj
, Udj = 0.1 ·

∫ t0+Tmj

t0

uj(t) dt, (4.1)

where Udj is the total performance degradation by VM j, t0 is the time when the migration

starts, Tmj is the time taken to complete the migration, uj(t) is the CPU utilization by VM

j, Mj is the amount of memory used by VM j, and Bj is the available network bandwidth.

4.2.4 SLA Violation Metrics

Meeting QoS requirements is highly important for Cloud computing environments. QoS

requirements are commonly formalized in the form of SLAs, which can be determined in

terms of such characteristics as minimum throughput or maximum response time deliv-

ered by the deployed system. Since these characteristics can vary for different applica-

tions, it is necessary to define a workload independent metric that can be used to evaluate

the QoS delivered for any VM deployed on the IaaS.

This work defines that the SLAs are satisfied when 100% of the performance requested

by applications inside a VM is provided at any time bounded only by the parameters

of the VM. Two metrics for measuring the level of SLA violations in an IaaS environ-

ment are proposed: (1) the fraction of time during which active hosts have experienced

the CPU utilization of 100%, Overload Time Fraction (OTF); and (2) the overall perfor-

mance degradation by VMs due to migrations, Performance Degradation due to Migra-

tions (PDM) (4.2). The reasoning behind the OTF metric is the observation that if a host

serving applications is experiencing the 100% utilization, the performance of the applica-

tions is bounded by the host’s capacity; therefore, VMs are not being provided with the

required performance level.

OTF =
1
N

N

∑
i=1

Tsi

Tai

, PDM =
1
M

M

∑
j=1

Cdj

Crj

, (4.2)

where N is the number of hosts; Tsi is the total time during which the host i has expe-

rienced the utilization of 100% leading to an SLA violation; Tai is the total of the host i

being in the active state (serving VMs); M is the number of VMs; Cdj is the estimate of the

98 Heuristics for Distributed Dynamic VM Consolidation

performance degradation of the VM j caused by migrations; Crj is the total CPU capacity

requested by the VM j during its lifetime. In this work, Cdj is estimated to be 10% of the

CPU utilization in MIPS during all migrations of the VM j.

Both the OTF and PDM metrics independently characterize the level of SLA violations

in the system; therefore, a combined metric that encompasses both performance degra-

dation due to host overloading and VM migrations is proposed, denoted SLA Violation

(SLAV). The metric is calculated as shown in (4.3).

SLAV = OTF · PDM. (4.3)

4.3 Heuristics for Distributed Dynamic VM Consolidation

This section presents several heuristics for dynamic consolidation of VMs based on an

analysis of historical data of the resource usage by VMs. The problem is divided into

four parts: (1) determining when a host is considered to be underloaded leading to the

need to migrate all the VMs from this host and switch the host into the sleep mode;

(2) determining when a host is considered to be overloaded requiring a migration of

one or more VMs from this host to reduce the load; (3) selecting VMs that should be

migrated from an overloaded host; and (4) finding a new placement of the VMs selected

for migration from the hosts. The sub-problems are discussed in the following sections.

4.3.1 Host Underload Detection

Although complex underload detection strategies can be applied, for the purpose of sim-

ulations in this chapter a simple approach is used. First, all the overloaded hosts are

found using the selected overload detection algorithm, and the VMs selected for migra-

tion are allocated to the destination hosts. Then, the system finds a compute host with

the minimal utilization compared with the other hosts, and attempts to place all the VMs

from this host on other hosts, while keeping them not overloaded. If such a placement

is feasible, the VMs are set for migration to the determined target hosts. Once the mi-

grations are completed, the source host is switched to the sleep mode to save energy. If

all the VMs from the source host cannot be placed on other hosts, the host is kept active.

4.3 Heuristics for Distributed Dynamic VM Consolidation 99

This process is iteratively repeated for all non-overloaded hosts.

4.3.2 Host Overload Detection

Each compute host periodically executes an overload detection algorithm to de-consolidate

VMs when needed in order to avoid performance degradation and SLA violation. This

section describes several heuristics proposed for the host overload detection problem.

A Static CPU Utilization Threshold

One of the simplest overload detection algorithms is based on an idea of setting a CPU

utilization threshold distinguishing the non-overload and overload states of the host.

When the algorithm is invoked, it compares the current CPU utilization of the host with

the defined threshold. If the threshold is exceeded, the algorithm detects a host overload.

An Adaptive Utilization Threshold: Median Absolute Deviation

The previous paragraph described a simple heuristic for detecting host overloads based

on setting a static CPU utilization threshold. However, fixed values of the utilization

threshold are unsuitable for an environment with dynamic and unpredictable workloads,

in which different types of applications can share a physical node. The system should be

able to automatically adjust its behavior depending on the workload patterns exhibited

by the applications.

This section presents a heuristic algorithm for auto-adjustment of the utilization thresh-

old based on statistical analysis of historical data collected during the lifetime of VMs.

The algorithm applies a robust statistical method, which is more effective than classical

methods for data containing outliers or coming from non-normal distributions. The pro-

posed adaptive-threshold algorithm adjusts the value of the CPU utilization threshold

depending on the strength of the deviation of the CPU utilization. The higher the de-

viation, the lower the value of the upper utilization threshold. This is explained by an

observation that a higher deviation increases the likelihood of the CPU utilization reach-

ing 100% and causing an SLA violation.

100 Heuristics for Distributed Dynamic VM Consolidation

Robust statistics provides an alternative approach to classical statistical methods [60].

The motivation is to produce estimators that are not excessively affected by small depar-

tures from model assumptions. The Median Absolute Deviation (MAD) is a measure of

statistical dispersion. It is a more robust estimator of scale than the sample variance or

standard deviation, as it behaves better with distributions without a mean or variance,

such as the Cauchy distribution.

The MAD is a robust statistic, being more resilient to outliers in a data set than the

standard deviation. In standard deviation, the distances from the mean are squared lead-

ing to large deviations being on average weighted more heavily. This means that outliers

may significantly influence the value of standard deviation. In the MAD, the magnitude

of the distances of a small number of outliers is irrelevant.

For a univariate data set X1, X2, ..., Xn, the MAD is defined as the median of the abso-

lute deviations from the median of the data set:

MAD = mediani(|Xi −medianj(Xj)|), (4.4)

that is, the MAD is the median of the absolute values of deviations (residuals) from the

data’s median. In the proposed overload detection algorithm, the CPU utilization thresh-

old (Tu) is defined as shown in (4.5).

Tu = 1− s ·MAD, (4.5)

where s ∈ R+ is a parameter of the method defining how strongly the system tolerates

host overloads. In other words, the parameter s allows the adjustment of the safety of the

method: a lower value of s results in a higher tolerance to variation in the CPU utilization,

while possibly increasing the level of SLA violations caused by the consolidation. Once

the threshold is calculated, the algorithm acts similarly to the static threshold algorithm

by comparing the current CPU utilization with the calculated threshold.

An Adaptive Utilization Threshold: Interquartile Range

This section proposes a method for setting an adaptive CPU utilization threshold based

on another robust statistic. In descriptive statistics, the Interquartile Range (IQR), also

4.3 Heuristics for Distributed Dynamic VM Consolidation 101

called the midspread or middle fifty, is a measure of statistical dispersion. It is equal to

the difference between the third and first quartiles: IQR = Q3 − Q1. Unlike the (total)

range, the interquartile range is a robust statistic, having a breakdown point of 25%, and

thus, is often preferred to the total range. For a symmetric distribution (i.e., such that

the median equals the average of the first and third quartiles), half of the IQR equals the

MAD. Using IQR, similarly to (4.5) the CPU utilization threshold is defined in (4.6).

Tu = 1− s · IQR, (4.6)

where s ∈ R+ is a parameter of the method defining the safety of the method similarly

to the parameter s of the method proposed in Section 4.3.2.

Local Regression

The next heuristic is based on the Loess method (from the German löss – short for local

regression) proposed by Cleveland [36]. The main idea of the local regression method is

fitting simple models to localized subsets of data to build up a curve that approximates

the original data. The observations (xi, yi) are assigned neighborhood weights using the

tricube weight function shown in (4.7).

T(u) =

(1− |u|3)3 if |u| < 1,

0 otherwise.
(4.7)

Let ∆i(x) = |xi − x| be the distance from x to xi, and let ∆(i)(x) be these distances

ordered from smallest to largest. Then, the neighborhood weight for the observation

(xi, yi) is defined by the function wi(x) (4.8).

wi(x) = T

(
∆i(x)

∆(q)(x)

)
, (4.8)

for xi such that ∆i(x) < ∆(q)(x), where q is the number of observations in the subset of

data localized around x. The size of the subset is defined by a parameter of the method

called the bandwidth. For example, if the degree of the polynomial fitted by the method is

1, the parametric family of functions is y = a + bx. The line is fitted to the data using the

102 Heuristics for Distributed Dynamic VM Consolidation

weighted least-squares method with weight wi(x) at (xi, yi). The values of a and b are

found by minimizing the function shown in (4.9).

n

∑
i=1

wi(x)(yi − a− bxi)
2. (4.9)

In the proposed algorithm, this approach is applied to fit a trend polynomial to the last

k observations of the CPU utilization, where k = dq/2e. A polynomial is fit for a single

point, the last observation of the CPU utilization (i.e., the right boundary xk of the data

set). The problem of the boundary region is well-known as leading to a high bias [65].

According to Cleveland [38], fitted polynomials of degree 1 typically distort peaks in the

interior of the configuration of observations, whereas polynomials of degree 2 remove

the distortion but result in higher biases at boundaries. Therefore, for host overload

detection, polynomials of degree 1 are chosen to reduce the bias at the boundary.

Let xk be the last observation, and x1 be the kth observation from the right boundary.

For the problem under consideration, xi satisfies x1 ≤ xi ≤ xk; thus, ∆i(xk) = xk − xi,

and 0 ≤ ∆i(xk)
∆1(xk)

≤ 1. Therefore, the tricube weight function can be simplified as T∗(u) =

(1− u3)3 for 0 ≤ u ≤ 1, and the weight function is the following:

wi(x) = T∗
(

∆i(xk)

∆1(xk)

)
=

(
1−

(
xk − xi

xk − x1

)3
)3

. (4.10)

In the proposed Local Regression (LR) algorithm, using the described method derived

from Loess, a new trend line ĝ(x) = â + b̂x is found for each new observation. This trend

line is used to estimate the next observation ĝ(xk+1). If the inequalities (4.11) are satisfied,

the algorithm detects a host overload, requiring some VMs to be offloaded from the host.

s · ĝ(xk+1) ≥ 1, xk+1 − xk ≤ tm, (4.11)

where s ∈ R+ is the safety parameter; and tm is the maximum time required for a migra-

tion of any of the VMs allocated to the host.

4.3 Heuristics for Distributed Dynamic VM Consolidation 103

Robust Local Regression

The version of Loess described in Section 4.3.2 is vulnerable to outliers that can be caused

by leptokurtic or heavy-tailed distributions. To make Loess robust, Cleveland proposed

the addition of the robust estimation method bisquare to the least-squares method for

fitting a parametric family [37]. This modification transforms Loess into an iterative

method. The initial fit is carried out with weights defined using the tricube weight func-

tion. The fit is evaluated at the xi to get the fitted values ŷi, and the residuals ε̂i = yi − ŷi.

At the next step, each observation (xi, yi) is assigned an additional robustness weight ri,

whose value depends on the magnitude of ε̂i. Each observation is assigned the weight

riwi(x), where ri is defined as in (4.12).

ri = B
(

ε̂i

6s

)
, (4.12)

where B(u) is the bisquare weight function (4.13), and s is the MAD for the least-squares fit

or any subsequent weighted fit (4.14).

B(u) =

(1− u2)2 if |u| < 1,

0 otherwise,
(4.13)

s = median|ε̂i|. (4.14)

Using the estimated trend line, the method described in Section 4.3.2 is applied to

estimate the next observation. If the inequalities (4.11) are satisfied, the host is detected

to be overloaded. This host algorithm is denoted Local Regression Robust (LRR).

4.3.3 VM Selection

Once a host overload is detected, the next step is to select VMs to offload from the host

to avoid performance degradation. This section presents three policies for VM selection.

104 Heuristics for Distributed Dynamic VM Consolidation

The Minimum Migration Time Policy

The Minimum Migration Time (MMT) policy migrates a VM v that requires the minimum

time to complete a migration relatively to the other VMs allocated to the host. The mi-

gration time is estimated as the amount of RAM utilized by the VM divided by the spare

network bandwidth available for the host j. Let Vj be a set of VMs currently allocated to

the host j. The MMT policy finds a VM v that satisfies the conditions formalized in (4.15).

v ∈ Vj|∀a ∈ Vj,
RAMu(v)

NETj
≤ RAMu(a)

NETj
, (4.15)

where RAMu(a) is the amount of RAM currently utilized by the VM a; and NETj is the

network bandwidth available for migration from the host j.

The Random Selection Policy

The Selection Choice (RS) policy randomly selects a VM to be migrated from the host ac-

cording to a uniformly distributed discrete random variable X d
=U(0, |Vj|), whose values

index a set of VMs Vj allocated to the host j.

The Maximum Correlation Policy

The Maximum Correlation (MC) policy is based on the idea proposed by Verma et al. [118].

The idea is that the higher the correlation between the resource usage by applications

running on an oversubscribed server, the higher the probability of the server overload-

ing. According to this idea, those VMs are selected to be migrated that have the highest

correlation of the CPU utilization with the other VMs.

To estimate the correlation between the CPU utilization of VMs, the multiple correlation

coefficient [1] is applied. It is used in multiple regression analysis to assess the quality of

the prediction of the dependent variable. The multiple correlation coefficient corresponds

to the squared correlation between the predicted and the actual values of the dependent

variable. It can also be interpreted as the proportion of the variance of the dependent

variable explained by the independent variables.

Let X1, X2, ..., Xn be n random variables representing the CPU utilization of n VMs

4.3 Heuristics for Distributed Dynamic VM Consolidation 105

allocated to a host. Let Y represent one of the VMs that is currently considered for being

migrated. Then n− 1 random variables are independent, and 1 variable Y is dependent.

The objective is to evaluate the strength of the correlation between Y and n− 1 remaining

random variables. The (n− 1)× n augmented matrix containing the observed values of

the n− 1 independent random variables is denoted by X, and the (n− 1)× 1 vector of

observations for the dependent variable Y is denoted by y (4.16). The matrix X is called

augmented because the first column is composed only of 1.

X =

1 x1,1 . . . x1,n−1
...

...
. . .

...

1 xn−1,1 . . . xn−1,n−1

 y =

y1
...

yn

 (4.16)

A vector of predicted values of the dependent random variable Ŷ is denoted by ŷ and

is obtained as shown in (4.17).

ŷ = Xb b =
(

XTX
)−1

XTy. (4.17)

Having found a vector of predicted values, it is now possible to compute the multiple

correlation coefficient R2
Y,1,...,n−1, which is equal to the squared coefficient of correlation

between the observed values y of the dependent variable Y and the predicted values

ŷ (4.18).

R2
Y,X1,...,Xn−1

=
∑n

i=1 (yi −mY)
2(ŷi −mŶ)

2

∑n
i=1 (yi −mY)2 ∑n

i=1 (ŷi −mŶ)
2 , (4.18)

where mY and mŶ are the sample means of Y and Ŷ respectively. The multiple correlation

coefficient is calculated for each Xi, which is denoted as R2
Xi ,X1,...,Xi−1,Xi+1,...,Xn

. The MC

policy finds a VM v that satisfies the conditions defined in (4.19).

v ∈ Vj|∀a ∈ Vj, R2
Xv,X1,...,Xv−1,Xv+1,...,Xn

≥ R2
Xv,X1,...,Xa−1,Xa+1,...,Xn

. (4.19)

4.3.4 VM Placement

VM placement can be seen as a bin packing problem with variable bin sizes and prices,

where bins represent the physical nodes; items are the VMs that have to be allocated; bin

106 Heuristics for Distributed Dynamic VM Consolidation

sizes are the available CPU capacities of the nodes; and prices correspond to the power

consumption by the nodes. As the bin packing problem is NP-hard, it is reasonable to

apply a heuristic, such as the Best Fit Decreasing (BFD) algorithm, which has been shown

to use no more than 11/9 ·OPT + 1 bins (where OPT is the number of bins provided by

the optimal solution) [130].

Algorithm 1 The Power Aware Best Fit Decreasing (PABFD) algorithm

Input: hostList, vmList
Output: vmPlacement

1: sort vmList in the order of decreasing utilization
2: for vm in vmList do
3: minPower←MAX
4: allocatedHost← NULL
5: for host in hostList do
6: if host has enough resources for vm then
7: power← estimatePower(host, vm)
8: if power < minPower then
9: allocatedHost← host

10: minPower← power
11: if allocatedHost 6= NULL then
12: add (allocatedHost, vm) to vmPlacement
13: return vmPlacement

This section presents a modification of the BFD algorithm denoted Power Aware Best

Fit Decreasing (PABFD) shown in Algorithm 1. The algorithm sorts all the VMs in de-

creasing order of their current CPU utilization and allocates each VM to a host that pro-

vides the least increase of the power consumption caused by the allocation. This ap-

proach allows the algorithm to leverage the heterogeneity of hosts by choosing the most

power-efficient ones first. The complexity of the algorithm is nm, where n is the number

of hosts and m is the number of VMs that have to be allocated.

4.4 Performance Evaluation

4.4.1 Experiment Setup

As the targeted system is an IaaS, a Cloud computing environment that is supposed to

create a view of infinite computing resources to users, it is essential to evaluate the pro-

posed resource allocation algorithms on a large-scale virtualized data center infrastruc-

4.4 Performance Evaluation 107

ture. However, it is extremely difficult to conduct repeatable large-scale experiments on a

real infrastructure, which is required to evaluate and compare the proposed algorithms.

Therefore, to ensure the repeatability of experiments, simulations were chosen as a way

to evaluate the performance of the proposed heuristics.

The CloudSim toolkit [29] was chosen as a simulation platform, as it is a modern sim-

ulation framework aimed at Cloud computing environments. In contrast to alternative

simulation toolkits (e.g. SimGrid, GangSim), it allows the modeling of virtualized envi-

ronments, supporting on-demand resource provisioning, and their management. It has

been extended to enable energy-aware simulations, as the core framework does not pro-

vide this capability. Apart from the energy consumption modeling and accounting, the

ability to simulate service applications with dynamic workloads has been incorporated.

The implemented extensions are included in the 2.0 version of the CloudSim toolkit.

The simulated data center comprised 800 heterogeneous physical nodes, half of which

were HP ProLiant ML110 G4 servers, and the other half consisted of HP ProLiant ML110

G5 servers. The characteristics of the servers and data on their power consumption are

given in Section 4.2.2. The frequencies of the servers’ CPUs were mapped onto MIPS

ratings: 1860 MIPS each core of the HP ProLiant ML110 G5 server, and 2660 MIPS each

core of the HP ProLiant ML110 G5 server. Each server had 1 GB/s network bandwidth.

The characteristics of the VM types corresponded to Amazon EC2 instance types2

with the only exception that all the VMs were single-core, which is explained by the

fact that the workload data used for the simulations come from single-core VMs (Sec-

tion 4.4.3). For the same reason the amount of RAM was divided by the number of cores

for each VM type: High-CPU Medium Instance (2500 MIPS, 0.85 GB); Extra Large In-

stance (2000 MIPS, 3.75 GB); Small Instance (1000 MIPS, 1.7 GB); and Micro Instance (500

MIPS, 613 MB). Initially the VMs were allocated according to the resource requirements

defined by the VM types. However, during the lifetime, VMs utilized less resources ac-

cording to the input workload data, creating opportunities for dynamic consolidation.

2Amazon EC2 instance types. http://aws.amazon.com/ec2/instance-types/

http://aws.amazon.com/ec2/instance-types/

108 Heuristics for Distributed Dynamic VM Consolidation

Table 4.2: Characteristics of the workload data (CPU utilization)

Date Number of VMs Mean St. dev. Quartile 1 Median Quartile 3

03/03/2011 1052 12.31% 17.09% 2% 6% 15%
06/03/2011 898 11.44% 16.83% 2% 5% 13%
09/03/2011 1061 10.70% 15.57% 2% 4% 13%
22/03/2011 1516 9.26% 12.78% 2% 5% 12%
25/03/2011 1078 10.56% 14.14% 2% 6% 14%
03/04/2011 1463 12.39% 16.55% 2% 6% 17%
09/04/2011 1358 11.12% 15.09% 2% 6% 15%
11/04/2011 1233 11.56% 15.07% 2% 6% 16%
12/04/2011 1054 11.54% 15.15% 2% 6% 16%
20/04/2011 1033 10.43% 15.21% 2% 4% 12%

4.4.2 Performance Metrics

In order to evaluate and compare the performance of the algorithms, several performance

metrics were used. One of the metrics was the total energy consumption by the physical

servers of the data center. Energy consumption was calculated according to the model

defined in Section 4.2.2. Metrics used to evaluate the level of SLA violations caused by

the system were SLAV, OTF and PDM defined in Section 4.2.4. Another metric was the

number of VM migrations initiated during the VM placement adaptation.

The main metrics are energy consumption by physical nodes and SLAV, however,

these metrics are typically negatively correlated as energy can usually be decreased by

the cost of the increased level of SLA violations. The objective of the resource manage-

ment system is to minimize both energy and SLA violations. Therefore, a combined met-

ric is proposed that captures both energy consumption and the level of SLA violations,

denoted Energy and SLA Violations (ESV) (4.20).

ESV = E · SLAV. (4.20)

4.4.3 Workload Data

To make a simulation-based evaluation applicable, it is important to conduct experiments

using workload traces from a real system. For experiments in this chapter, the data pro-

vided as a part of the CoMon project, a monitoring infrastructure for PlanetLab [92], were

used. The data contains the CPU utilization by more than a thousand VMs from servers

4.4 Performance Evaluation 109

Table 4.3: Comparison of VM selection policies using paired T-tests

Policy 1 (ESV ×10−3) Policy 2 (ESV ×10−3) Difference (×10−3) P-value

RS (4.03) MC (3.83) 0.196 (0.134, 0.258) P-value < 0.001
RS (4.03) MMT (3.23) 0.799 (0.733, 0.865) P-value < 0.001
MC (3.83) MMT (3.23) 0.603 (0.533, 0.673) P-value < 0.001

located at more than 500 places around the world collected during 10 randomly selected

days in March and April 2010. The interval of utilization measurements is 5 minutes.

The characteristics of the data for each day are shown in Table 4.2. The data confirm

the statement made in Chapter 2: the average CPU utilization is far below 50%. During

the simulations, each VM was randomly assigned a workload trace from one of the VMs

from the corresponding day. Since the objective of the experiments was to stress the

consolidation algorithms, VM consolidation was not limited by the memory bounds.

4.4.4 Simulation Results and Analysis

Using the workload data described in Section 4.4.3, all combinations of the five proposed

host overloading detection algorithms (THR, IQR, MAD, LR, and LRR) and three VM se-

lection algorithms (MMT, RS, and MC) were simulated. Moreover, the parameters of each

overload detection algorithm were varied as follows: for THR from 0.6 to 1.0 increasing

by 0.1; for IQR and MAD from 0.5 to 3.0 increasing by 0.5; for LR and LRR from 1.0 to

1.4 increasing by 0.1. These variations resulted in 81 combinations of the algorithms and

parameters.

According to Ryan-Joiner’s normality test, the values of the ESV metric produced

by the algorithm combinations did not follow a normal distribution with the P-value <

0.01. Therefore, the median values of the ESV metric were used to compare the algorithm

combinations and select the parameter of each algorithm combination that minimizes the

median ESV metric calculated over 10 days of the workload traces. The results produced

by the selected algorithms are shown in Figure 4.2.

According to Ryan-Joiner’s normality test, the values of the ESV metric produced by

the selected algorithm combinations follow a normal distribution with the P-value > 0.1.

Three paired T-tests were conducted to determine the VM selection policy that minimizes

the ESV metric across all algorithm combinations (Table 4.3). The T-tests showed that the

110 Heuristics for Distributed Dynamic VM Consolidation

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

7

6

5

4

3

2

1

0

E
S

V
,

x
0

.0
0

1

(a) The ESV metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

130

120

110

100

90

80

70

60

E
n

e
r
g

y
,

k
W

h

(b) Energy consumption

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

9

8

7

6

5

4

3

2

1

0

S
L

A
V

,
x

0
.0

0
0

0
1

(c) The SLAV metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

S
L

A
T

A
H

,
%

(d) The OTF metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

0.18%

0.15%

0.13%

0.10%

0.07%

0.05%

P
D

M
,

%

(e) The PDM metric

LR
 M

M
T 1

.2

LR
 M

C
 1

.3

LR
 R

S 1
.3

LR
R
 M

M
T 1

.2

LR
R
 M

C
 1

.2

LR
R
 R

S 1
.3

M
A

D
 M

M
T 2

.5

M
A

D
 M

C
 2

.5

M
A

D
 R

S 2
.5

IQ
R
 M

M
T 1

.5

IQ
R
 M

C
 1

.5

IQ
R
 R

S 1
.5

TH
R
 M

M
T 0

.8

TH
R
 M

C
 0

.8

TH
R
 R

S 0
.8

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

V
M

 M
ig

ra
ti

o
n

s,
 x

1
0

0
0

(f) VM migrations

Figure 4.2: Algorithm comparison in regard to the ESV, SLAV, OTF, and PDM metrics, as
well as energy consumption, and the number of VM migrations

usage of the MMT policy leads to a statistically significantly lower value of the ESV metric

with the P-value < 0.001. Next, the combinations of the overload detection algorithms

with the MMT policy are analyzed.

To meet the assumptions of the ANOVA model, the values of the ESV metric for the

algorithm combinations with the MMT policy were transformed using the square root

function. The standardized residuals from the transformed data pass Ryan-Joiner’s test

4.4 Performance Evaluation 111

with the P-value > 0.1, justifying the assumption that the sample comes from a normal

distribution. A plot of the standardized residuals against the fitted values showed that

the assumption of equal variances is met.

Having the assumptions of the model met, the F-test was applied to check whether

there is a statistically significant difference between the results produced by the com-

binations of the overload detection algorithms with the MMT policy with the selected

parameters. The test showed that there is a statistically significant difference with the

P-value < 0.001. Tukey’s pairwise comparisons are summarized in Table 4.4.

According to the results of Tukey’s pairwise comparisons, there is no statistically sig-

nificant difference between the THR-MMT-0.8, IQR-MMT-1.5 and MAD-MMT-2.5 algo-

rithms (group A), and between the LRR-MMT-1.2 and LR-MMT-1.2 algorithms (group B).

However, there is a statistically significant difference between the local regression based

algorithms and the other algorithms. Nevertheless, a paired T-test for a comparison of

the means of the ESV metric produced by LRR-MMT-1.2 and LR-MMT-1.2 showed that

there is a statistically significant difference with the P-value < 0.001. The mean difference

is 4.21× 10−4 with a 95% CI: (3.23× 10−4, 5.19× 10−4).

As a paired T-test provides more precise results than Tukey’s pairwise comparisons,

it follows that LR-MMT-1.2 provides the best results compared to all the other combi-

nations of algorithms in regard to the ESV metric. Moreover, the trade-off between en-

ergy consumption and SLA violations can be adjusted by varying the safety parameter of

the LR algorithm. The results of the combinations of each overload detection algorithm

with the best parameters and the MMT policy, along with the benchmark algorithms are

shown in Table 4.5. The benchmark policies include Non Power Aware (NPA), DVFS,

and THR combined with the MMT policy. The NPA policy makes all the hosts consume

Table 4.4: Tukey’s pairwise comparisons using the transformed ESV. Values that do not
share a letter are significantly different.

Policy SQRT(ESV) (×10−2) 95% CI Grouping

THR-MMT-0.8 6.34 (5.70, 6.98) A
IQR-MMT-1.5 6.16 (5.44, 6.87) A
MAD-MMT-2.5 6.13 (5.49, 6.77) A
LRR-MMT-1.2 4.82 (4.22, 5.41) B
LR-MMT-1.2 4.37 (3.83, 4.91) B

112 Heuristics for Distributed Dynamic VM Consolidation

the maximum power all the time.

Based on the observed simulation results, several conclusions can be made:

1. Dynamic VM consolidation algorithms significantly outperform static allocation

policies, such as NPA and DVFS.

2. Statistics-based overload detection algorithms substantially outperform the static

CPU utilization threshold algorithm due to a vastly reduced level of SLA viola-

tions.

3. The MMT policy produces better results compared to the MC and RS policies,

meaning that the minimization of the VM migration time is more important than

the minimization of the correlation between VMs allocated to a host.

4. Host overload detection algorithms based on local regression outperform the thresh-

old based algorithms due to a decreased level of SLA violations and the number

of VM migrations.

5. The LR algorithm produces better results than its robust modification, which can

be explained by the fact that, for the simulated workload, it is more important to

quickly react to load spikes instead of smoothing out such outlying observations.

In the simulations, the mean value of the sample means of the time before a host is

switched to the sleep mode for the LR-MMT-1.2 algorithm combination was 1933 seconds

with the 95% CI: (1740, 2127). This means that on average a host is switched to the sleep

mode after approximately 32 minutes of activity. This value is effective for real-world

systems, as modern servers allow low-latency transitions to the sleep mode consuming

low power. Meisner et al. [81] showed that a typical blade server consuming 450 W

in the fully utilized state consumes approximately 10.4 W in the sleep mode, while the

transition delay is 300 ms.

The mean number of host transitions to the sleep mode (the total number of hosts is

800) per day was 1272 with 95% CI: (1211, 1333). The mean value of the sample means

of the time before a VM is migrated from a host for the same algorithm combination was

15.3 seconds with the 95% CI: (15.2, 15.4). The mean value of the sample means of the

execution time of the LR-MMT-1.2 algorithm on a server with an Intel Xeon 3060 (2.40

GHz) processor and 2 GB of RAM was 0.20 ms with the 95% CI: (0.15, 0.25).

4.5 Conclusions 113

Table 4.5: Simulation results of the best algorithm combinations and benchmark algo-
rithms (median values)

Policy ESV
(×10−3)

Energy
(kWh)

SLAV
(×10−5) OTF PDM VM migr.

(×103)

NPA 0 2419.2 0 0% 0% 0
DVFS 0 613.6 0 0% 0% 0
THR-MMT-1.0 20.12 75.36 25.78 24.97% 0.10% 13.64
THR-MMT-0.8 4.19 89.92 4.57 4.61% 0.10% 17.18
IQR-MMT-1.5 4.00 90.13 4.51 4.64% 0.10% 16.93
MAD-MMT-2.5 3.94 87.67 4.48 4.65% 0.10% 16.72
LRR-MMT-1.2 2.43 87.93 2.77 3.98% 0.07% 12.82
LR-MMT-1.2 1.98 88.17 2.33 3.63% 0.06% 11.85

4.5 Conclusions

To maximize their Return On Investment (ROI), Cloud providers need to apply energy-

efficient resource management strategies, such as dynamic VM consolidation with switch-

ing idle servers to power-saving modes. However, such consolidation is not trivial, as it

may result in violations of the SLAs negotiated with customers. Based on the analysis in

Chapter 3, this chapter proposed novel heuristics for distributed dynamic VM consolida-

tion that rely on an analysis of historical data on the CPU utilization by VMs to leverage

the predictability of the workload.

Simulations of a large-scale data center using workload traces from more than a thou-

sand PlanetLab VMs have shown that the proposed local regression based host overload

detection algorithm combined with the MMT VM selection policy significantly outper-

forms other dynamic VM consolidation algorithms in regard to the ESV metric due to a

substantially reduced level of SLA violations and the number of VM migrations.

A disadvantage of the proposed algorithms is the inability to explicitly specify a QoS

constraint: the performance of the algorithms in regard to QoS can only be adjusted

indirectly by tuning the parameters of the algorithms. The next chapter investigates a

host overload detection algorithm based on a Markov chain model, which allows the

explicit specification of a QoS goal.

Chapter 5

The Markov Host Overload Detection
Algorithm

This chapter investigates the problem of host overload detection as a part of dynamic VM consoli-

dation. Determining when it is best to reallocate VMs from an overloaded host is an aspect of dynamic

VM consolidation that directly influences the resource utilization and Quality of Service (QoS) de-

livered by the system. The influence on the QoS is explained by the fact that server overloads cause

resource shortages and performance degradation of applications. Current solutions to the problem of

host overload detection are generally heuristic-based, or rely on statistical analysis of historical data.

The limitations of these approaches are that they lead to sub-optimal results and do not allow explicit

specification of a QoS goal. This chapter presents a novel approach that for any known stationary

workload and a given state configuration optimally solves the problem of host overload detection by

maximizing the mean inter-migration time under the specified QoS goal based on a Markov chain

model. The algorithm is heuristically adapted to handle unknown non-stationary workloads using the

Multisize Sliding Window workload estimation technique, and evaluated by simulations.

5.1 Introduction

THE previous chapter introduced a distributed approach to dynamic VM consoli-

dation that consists in splitting the problem into 4 sub-problems:

1. Deciding when a host is considered to be underloaded, so that its VMs should be

migrated, and the host should be switched to a low-power mode.

2. Deciding when a host is considered to be overloaded, so that some VMs should be

migrated from it to other hosts to meet the QoS requirements.

3. Selecting VMs to migrate from an overloaded host.

4. Allocating the VMs selected for migration to other active or re-activated hosts.

115

116 The Markov Host Overload Detection Algorithm

This chapter focuses on the second sub-problem – the problem of host overload detec-

tion. Detecting when a host becomes overloaded directly influences the QoS, since if the

resource capacity is completely utilized, it is highly likely that the applications are expe-

riencing resource shortage and performance degradation. What makes the host overload

detection problem complex is the necessity to optimize the time-averaged behavior of the

system, while handling a variety of heterogeneous workloads placed on a single host.

To address this problem, most of the current approaches to dynamic VM consolida-

tion apply either heuristic-based techniques, such as utilization thresholds [54, 55, 121,

135]; decision-making based on statistical analysis of historical data [23, 57]; or simply

periodic adaptation of the VM allocation [86, 119]. The limitations of these approaches

are that they lead to sub-optimal results and do not allow the system administrator to ex-

plicitly set a QoS goal. In other words, the performance in regard to the QoS delivered by

the system can only be adjusted indirectly by tuning parameters of the applied host over-

load detection algorithm. In contrast, the approach proposed in this chapter enables the

system administrator to explicitly specify a QoS goal in terms of a workload independent

QoS metric. The underlying analytical model allows a derivation of an optimal random-

ized control policy for any known stationary workload and a given state configuration.

The key contributions of this chapter are the following:

1. An analytical model showing that to improve the quality of VM consolidation, it

is necessary to maximize the mean time between VM migrations initiated by the

host overload detection algorithm.

2. An optimal offline algorithm for host overload detection, and proof of its optimality.

3. A novel Markov chain model that allows a derivation of a randomized control

policy that optimally solves the problem of maximizing the mean time between

VM migrations under an explicitly specified QoS goal for any known stationary

workload and a given state configuration in the online setting.

4. A heuristically adapted algorithm for handling unknown non-stationary work-

loads using the Multisize Sliding Window workload estimation approach [80],

which leads to comparable to the best benchmark algorithm performance in terms

of the inter-migration time, while providing the advantage of explicit specifica-

tion of a QoS goal. The adapted algorithm leads to approximately 88% of the

5.2 Related Work 117

mean inter-migration time produced by the optimal offline algorithm for the in-

put workload traces used in the experiments.

The proposed algorithm is evaluated by simulations using real-world workload traces

from more than a thousand PlanetLab1 VMs hosted on servers located in more than 500

places around the world. The experiments show that the introduced algorithm outper-

forms the benchmark algorithms, while meeting the QoS goal in accordance with the

theoretical model. The algorithm uses a workload independent QoS metric and trans-

parently adapts its behavior to various workloads; therefore, it can be applied in an en-

vironment with unknown non-stationary workloads, such as IaaS.

It is important to note that the model proposed in this chapter is based on Markov

chains requiring a few fundamental modeling assumptions. First of all, the workload

must satisfy the Markov property, which implies memoryless state transitions and an

exponential distribution of state transition delays. These assumptions must be taken

into account in an assessment of the applicability of the proposed model to a particular

system. A more detailed discussion of the modeling assumptions and validation of the

assumptions is given in Section 5.6.5.

The remainder of the chapter is organized as follows. The next section discusses the

related work followed by the objective of host overload detection and workload indepen-

dent QoS metric in Sections 5.3 and 5.4 respectively. An optimal offline algorithm for the

problem of host overload detection is introduced in Section 5.5. In Section 5.6, a Markov

model for the problem of host overload detection is presented, and approximated for

unknown non-stationary workloads in Section 5.7. In Section 5.8, a control algorithm is

proposed followed by a multi-core CPU model in Section 5.9 and an experimental eval-

uation in Section 5.10. The chapter is concluded with Section 5.11 discussing the results

and future research directions.

5.2 Related Work

Prior approaches to host overload detection for energy-efficient dynamic VM consol-

idation proposed in the literature can be broadly divided into 3 categories: periodic

1The PlanetLab project. http://www.planet-lab.org/

http://www.planet-lab.org/

118 The Markov Host Overload Detection Algorithm

adaptation of the VM placement (no overload detection), threshold-based heuristics, and

decision-making based on statistical analysis of historical data. One of the first works, in

which dynamic VM consolidation has been applied to minimize energy consumption in

a data center, has been performed by Nathuji and Schwan [86]. They explored the energy

benefits obtained by consolidating VMs using migration and found that the overall en-

ergy consumption can be significantly reduced. Verma et al. [119] modeled the problem

of power-aware dynamic VM consolidation as a bin-packing problem and proposed a

heuristic that minimizes the data center’s power consumption, taking into account the

VM migration cost. However, the authors did not apply any algorithm for determining

when it is necessary to optimize the VM placement – the proposed heuristic is simply

periodically invoked to adapt the placement of VMs.

Zhu et al. [135] studied the dynamic VM consolidation problem and applied a heuris-

tic of setting a static CPU utilization threshold of 85% to determine when a host is over-

loaded. The host is assumed to be overloaded when the threshold is exceeded. The 85%

utilization threshold has been first introduced and justified by Gmach et al. [54] based

on their analysis of workload traces. In their more recent work, Gmach et al. [55] inves-

tigated benefits of combining both periodic and reactive threshold-based invocations of

the migration controller. VMware Distributed Power Management [121] operates based

on the same idea with the utilization threshold set to 81%. However, static threshold

heuristics are unsuitable for systems with unknown and dynamic workloads, as these

heuristics do not adapt to workload changes and do not capture the time-averaged be-

havior of the system. This approach has been outperformed by the algorithms proposed

in Chapter 4. In this chapter, static and dynamic threshold heuristics are used as bench-

mark algorithms in the experimental evaluation of the proposed approach.

Jung et al. [64] investigated the problem of dynamic consolidation of VMs running

multi-tier web-applications to optimize a global utility function, while meeting SLA re-

quirements. The approach is workload-specific, as the SLA requirements are defined in

terms of the response time precomputed for each transaction type of the applications.

When the request rate deviates out of an allowed interval, the system adapts the place-

ment of VMs and the states of the hosts. Zheng et al. [134] proposed automated experi-

mental testing of the efficiency of a reallocation decision prior to its application, once the

5.2 Related Work 119

response time, specified in the SLAs, is violated. In the approach proposed by Kumar

et al. [71], the resource allocation is adapted when the application’s SLAs are violated.

Wang et al. [123] applied control loops to manage resource allocation under response

time QoS constraints at the cluster and server levels. If the resource capacity of a server

is insufficient to meet the applications’ SLAs, a VM is migrated from the server. All these

works are similar to threshold-based heuristics in that they rely on instantaneous values

of performance characteristics but do not leverage the observed history of system states to

estimate the future behavior of the system and optimize the time-averaged performance.

Guenter et al. [57] implemented an energy-aware dynamic VM consolidation system

focused on web-applications, whose SLAs are defined in terms of the response time. The

authors applied weighted linear regression to predict the future workload and proac-

tively optimize the resource allocation. This approach is in line with the Local Regression

(LR) algorithm proposed in Chapter 4, which is used as one of the benchmark algorithms

in this chapter. Bobroff et al. proposed a server overload forecasting technique based

on time-series analysis of historical data [23]. Unfortunately, the algorithm description

given in the paper is too high level, which does not allow us to implement it to compare

with the approach proposed in this chapter. Weng et al. [127] proposed a load-balancing

system for virtualized clusters. A cluster-wide cost of the VM allocation is periodically

minimized to detect overloaded and underloaded hosts, and reallocate VMs. This is a

related work but with the opposite objective – the VMs are deconsolidated to balance the

load across the hosts.

As mentioned above, the common limitations of the prior works are that, due to their

heuristic basis, they lead to sub-optimal results and do not allow the system adminis-

trator to explicitly set a QoS goal. In this work, a novel approach to the problem of

host overload detection is proposed inspired by the work of Benini et al. [21] on power

management of electronic systems using Markov decision processes. A Markov chain

model is created for the case of a known stationary workload and a given state config-

uration. Using a workload independent QoS metric, a Non-Linear Programming (NLP)

problem formulation is derived. The solution of the derived NLP problem is the optimal

control policy that maximizes the time between VM migrations under the specified QoS

constraint in the online setting. Since most real-world systems, including IaaS, experi-

120 The Markov Host Overload Detection Algorithm

ence highly variable non-stationary workloads, the Multisize Sliding Window workload

estimation technique proposed by Luiz et al. [80] is applied to heuristically adapt the

proposed model to non-stationary stochastic environments and practical applications.

Although the final approach is a heuristic, in contrast to the related works it is based

on an analytical model that allows the computation of an optimal control policy for any

known stationary workload and a given state configuration.

5.3 The Objective of a Host Overload Detection Algorithm

This section shows that to improve the quality of VM consolidation, it is necessary to

maximize the time intervals between VM migrations from overloaded hosts. Since VM

consolidation is applied to reduce the number of active hosts, the VM consolidation qual-

ity is inversely proportional to H, the mean number of active hosts over n time steps:

H =
1
n

n

∑
i=1

ai, (5.1)

where ai is the number of active hosts at the time step i = 1, 2, . . . , n. A lower value of H

represents a better quality of VM consolidation.

To investigate the impact of decisions made by host overload detection algorithms

on the quality of VM consolidation, consider an experiment, where at any time step the

host overload detection algorithm can initiate a migration from a host due to an over-

load. There are two possible consequences of a decision to migrate a VM relevant to host

overload detection: Case 1, when a VM to be migrated from an overloaded host cannot

be placed on another active host due to insufficient resources, and therefore, a new host

has to be activated to accommodate the VM; and Case 2, when a VM to be migrated can

be placed on another active host. To study host overload detection in isolation, it is as-

sumed that no hosts are switched off during the experiment, i.e., once a host is activated,

it remains active until n.

Let p be the probability of Case 1, i.e., an extra host has to be activated to migrate a VM

from an overloaded host determined by the host overload detection algorithm. Then, the

probability of Case 2 is (1− p). Let T be a random variable denoting the time between

two subsequent VM migrations initiated by the host overload detection algorithm. The

5.3 The Objective of a Host Overload Detection Algorithm 121

expected number of VM migrations initiated by the host overload detection algorithm

over n time steps is n/E[T], where E[T] is the expected inter-migration time.

Based on the definitions given above, the number of extra hosts switched on due to

VM migrations initiated by the host overload detection algorithm over n time steps can

be defined as X ∼ B(n/E[T], p), which is a binomially distributed random variable. The

expected number of extra hosts activated is E[X] = np/E[T]. Let A be a random variable

denoting the time during which an extra host is active between the time steps 1 and n.

The expected value of A can be defined as follows:

E[A] =

⌊
n

E[T]

⌋
∑
i=1

(n− (i− 1)E[T])p

=

⌊
n

E[T]

⌋
p
2

(
n + n−

(⌊
n

E[T]

⌋
− 1
)

E[T]
)

≤np
2

(
1 +

n
E[T]

)
.

(5.2)

(5.1) can be rewritten as follows:

H =
1
n

n

∑
i=1

ai

=
1
n

n

∑
i=1

a1 +
1
n

n

∑
i=1

(ai − a1)

=a1 +
1
n

n

∑
i=1

(ai − a1).

(5.3)

The first term a1 is a constant denoting the number of hosts that have been initially ac-

tive and remain active until the end of the experiment. The second term H∗ = 1
n ∑n

i=1(ai−

a1) is the mean number of hosts switched on due to VM migrations being active per unit

of time over n time steps. It is important to analyze the average behavior, and thus esti-

mate the expected value of H∗. It is proportional to a product of the expected number of

extra hosts switched on due to VM migrations and the expected activity time of an extra

host normalized by the total time, as shown in (5.4).

122 The Markov Host Overload Detection Algorithm

E[H∗] ∝
1
n

E[X]E[A]

≤ 1
n

np
E[T]

np
2

(
1 +

n
E[T]

)
=

np2

2E[T]

(
1 +

n
E[T]

)
.

(5.4)

Since the objective is to improve the quality of VM consolidation, it is necessary to

minimize E[H∗]. From (5.4), the only variable that can be directly controlled by a host

overload detection algorithm is E[T]; therefore, to minimize E[H∗] the objective of a host

overload detection algorithm is to maximize E[T], i.e., to maximize the mean time be-

tween migrations from overloaded hosts.

5.4 A Workload Independent QoS Metric

To impose QoS requirements on the system, an extension of the workload independent QoS

metric introduced in Chapter 4 is applied. For the purpose of this chapter, a host can be

in one of two states in regard to its load level: (1) serving regular load; and (2) being

overloaded. It is assumed that if a host is overloaded, the VMs allocated to the host are

not being provided with the required performance level leading to performance degrada-

tion. To evaluate the overall performance degradation, a metric denoted Overload Time

Fraction (OTF) is defined as follows:

OTF(ut) =
to(ut)

ta
, (5.5)

where ut is the CPU utilization threshold distinguishing the non-overload and overload

states of the host; to is the time, during which the host has been overloaded, which is

a function of ut; and ta is the total time, during which the host has been active. Using

this metric, SLAs can be defined as the maximum allowed value of OTF. For example, if

in the SLAs it is stated that OTF must be less or equal to 10%, it means that on average

a host is allowed to be overloaded for not more than 10% of its activity time. Since the

provider is interested in maximizing the resource utilization while meeting the SLAs,

from his perspective this requirement corresponds to the QoS goal of OTF → 10%, while

5.4 A Workload Independent QoS Metric 123

OTF ≤ 10%. The definition of the metric for a single host can be extended to a set of

hosts by substituting the time values by the aggregated time values over the set of hosts.

The exact definition of the state of a host, when it is overloaded, depends on the

specific system requirements. However, the value of the CPU utilization threshold ut

defining the states of a host does not affect the model proposed in this chapter, the model

allows setting the threshold to any value. For example, in the experiments of this chapter,

it is defined that a host is overloaded, when its CPU utilization is 100%, in which case the

VMs allocated to this host do not get the required CPU capacity leading to performance

degradation. The reasoning behind this is the observation that if a host serving applica-

tions is experiencing 100% utilization, the performance of the applications is constrained

by the host’s capacity; therefore, the VMs are not being provided with the required per-

formance level.

It has been claimed in the literature that the performance of servers degrade, when

their load approaches 100% [108, 133]. For example, the study of Srikantaiah et al. [108]

has shown that the performance delivered by the CPU degrades when the utilization is

higher than 70%. If due to system requirements, it is important to avoid performance

degradation, the proposed OTF metric allows the specification of the CPU utilization

threshold at the required level below 100%. The host is considered to be overloaded,

when the CPU utilization is higher than the specified threshold.

In general, other system resources, such as memory, disk, and network bandwidth,

should also be taken into account in the definition of QoS requirements. However, in

this chapter, only the CPU is considered, as it is one of the main resources that are usu-

ally oversubscribed by Cloud providers. Therefore, in the analysis of this chapter, it is

assumed that the other system resources are not significantly oversubscribed and do not

become performance bottlenecks.

Verma et al. [118] proposed a similar metric for estimating the SLA violation level in a

system, which they defined as the number of time instances, when the capacity of a server

is less than the demand of all applications placed on it. However, their metric shows a

non-normalized absolute value, which, for example, cannot be used to compare systems

processing the same workload for different periods of time. In contrast, the OTF metric

is normalized and does not depend on the length of the time period under consideration.

124 The Markov Host Overload Detection Algorithm

In the next section, based on the objective of a host overload detection algorithm de-

rived in Section 5.3 and the OTF metric introduced in this section, an optimal offline algo-

rithm for the host overload detection problem is proposed, and its optimality is proved.

5.5 An Optimal Offline Algorithm

As shown in Section 5.3, it is necessary to maximize the mean time between VM mi-

grations initiated by the host overload detection algorithm, which can be achieved by

maximizing each individual inter-migration time interval. Therefore, the problem for-

mulation is limited to a single VM migration, i.e., the time span of a problem instance is

from the end of a previous VM migration and to the end of the next. Given the results

of Sections 5.3 and 5.4, the problem of host overload detection can be formulated as an

optimization problem (5.6)-(5.7).

ta(tm, ut)→ max (5.6)

to(tm,ut)
ta(tm,ut)

≤ M, (5.7)

where tm is the time when a VM migration has been initiated; ut is the CPU utilization

threshold defining the overload state of the host; to(tm, ut) is the time, during which the

host has been overloaded, which is a function of tm and ut; ta is the total time, during

which the host has been active, which is also a function of tm and ut; and M is the limit

on the maximum allowed OTF value, which is a QoS goal expressed in terms of OTF.

The aim of a host overload detection algorithm is to select the tm that maximizes the total

time until a migration, while satisfying the constraint (5.7). It is important to note that the

optimization problem (5.6)-(5.7) is only relevant to host overload detection, and does not

relate to host underload situations. In other words, maximizing the activity time of a host

is only important for highly loaded hosts. Whereas for underloaded hosts, the problem

is the opposite – the activity time needs to be minimized; however, this problem is not

the focus of the current chapter and should be investigated separately.

In the offline setting, the state of the system is known at any point in time. Consider

an offline algorithm that passes through the history of system states backwards starting

5.6 A Markov Chain Model for Host Overload Detection 125

from the last known state. The algorithm decrements the time and re-calculates the OTF

value to(tm,ut)
ta(tm,ut)

at each iteration. The algorithm returns the time that corresponds to the

current iteration if the constraint (5.7) is satisfied (Algorithm 2).

Algorithm 2 The Optimal Offline (OPT) algorithm

Input: A system state history
Input: M, the maximum allowed OTF
Output: A VM migration time

1: while history is not empty do
2: if OTF of history ≤ M then
3: return the time of the last history state
4: else
5: drop the last state from history

Theorem 5.1. Algorithm 2 is an optimal offline algorithm (OPT) for the problem of host overload

detection.

Proof. Let the time interval covered by the system state history be [t0, tn], and tm be the

time returned by Algorithm 2. Then, according to the algorithm the system states cor-

responding to the time interval (tm, tn] do not satisfy the constraint (5.7). Since tm is the

right bound of the interval [t0, tm], then tm is the maximum possible time that satisfies the

constraint (5.7). Therefore, tm is the solution of the optimization problem (5.6)-(5.7), and

Algorithm 2 is an optimal offline algorithm for the host overload detection problem.

5.6 A Markov Chain Model for Host Overload Detection

In this section, the proposed model is based on the definitions of Markov chains, a math-

ematical framework for statistical modeling of real-world processes.

5.6.1 Background on Markov Chain

This section introduces the basic definitions of the Markov chains modeling framework.

Bolch [24] provides a detailed introduction to Markov chains.

A stochastic process {X0, X1, . . . , Xn+1, . . .} at the consecutive points of observation

0, 1, . . . , n + 1 constitutes a Discrete-Time Markov Chain (DTMC) if the following relation

on the conditional Probability Mass Function (PMF) holds ∀n ∈N0, and ∀si ∈ S = N0:

126 The Markov Host Overload Detection Algorithm

P(Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, . . . , X0 = s0) = P(Xn+1 = sn+1|Xn = sn). (5.8)

Given an initial state s0, a DTMC evolves step by step according to the one-step transi-

tion probabilities:

p(1)ij (n) = P(Xn+1 = sn+1 = j|Xn = sn = i). (5.9)

If the conditional PMF is independent of the time parameter n, the DTMC is referred

to as time-homogeneous and (5.9) reduces to: pij = P(Xn+1 = j|Xn = i) ∀n ∈ T. Starting

from a state i, the DTMC transitions to a state j, so that ∑j pij = 1, where 0 ≤ pij ≤ 1. The

one-step transition probabilities pij are usually summarized in a non-negative transition

probability matrix P = [pij].

Let t ∈ T be the time parameter, where T ⊆ R+ = [0, ∞); let S be the state space of

the stochastic process comprising all possible values of Xt (for each t ∈ T). A stochastic

process {Xt : t ∈ T } constitutes a Markov process if for all 0 = t0 < t1 < . . . < tn < tn+1,

∀n ∈ N, and ∀si ∈ S the conditional Cumulative Distribution Function (CDF) of Xtn+1

depends only on the previous value Xtn and not on the earlier values Xt0 , Xt1 , . . . , Xtn−1 :

P(Xtn+1 ≤ sn+1|Xtn = sn, Xtn−1 = sn−1, . . . , Xt0 = s0) = P(Xtn+1 ≤ sn+1|Xtn = sn). (5.10)

A stochastic process {Xt : t ∈ T } constitutes a Continuous-Time Markov Chain (CTMC)

if for arbitrary ti ∈ R+
0 , with 0 = t0 < t1 < . . . < tn < tn+1 , ∀n ∈ N, and ∀si ∈

S = N0 for the conditional PMF, the relation (5.10) holds. In other words, a CTMC

is a Markov process restricted to a discrete, finite, or countably infinite state space S ,

and a continuous-parameter space T . The right-hand side of (5.10) is referred to as the

transition probability pij(u, v) of the CTMC to travel from state i to state j during the period

of time [u, v), with u, v ∈ T and u ≤ v: pij(u, v) = P(Xv = j|Xu = i). If the transition

probabilities pij(u, v) depend only on the time difference t = v− u and not on the actual

values of u and v, the CTMC is time-homogeneous with simplified transition probabilities:

pij(t) = P(Xu+t = j|Xu = i).

The analysis in this chapter focuses on time-homogeneous Markov chains, which

5.6 A Markov Chain Model for Host Overload Detection 127

can also be described as Markov chains with stationary transition probabilities. Time-

homogeneous Markov chains correspond to stationary workloads, i.e., workloads, whose

statistical properties do not change over time. Section 5.7 shows how a time-homogeneous

Markov model can be adapted to cases of non-stationary workloads.

Another characteristic that describes transitions of a CTMC between the states is the

instantaneous transition rate qij(t) of the CTMC traveling from state i to state j. The non-

negative, finite, continuous functions qij(t) satisfy the following conditions:

qij(t) = lim
∆t→0

pij(t, t + ∆t)
∆t

, i 6= j,

qii(t) = lim
∆t→0

pii(t, t + ∆t)− 1
∆t

,
(5.11)

where ∆t is chosen such that ∑j∈S qij(t)∆t + o(∆t) = 1; i, j ∈ S . A matrix Q = [qij] ∀i, j ∈

S is called the infinitesimal generator matrix of the transition probability matrix P(t) =

[pij(t)]. The elements qii on the main diagonal of Q are given by qii = −∑j∈S ,j 6=i qij.

A vector π(t) = [πi(t)] ∀i ∈ S contains the probabilities that the CTMC will be in the

state i at the time t. Using the Kolmogorov forward equation [24], the following equation

for the unconditional state probability vector π(t) can be derived:

dπ(t)
dt

= π(t)Q. (5.12)

A transition probability matrix P of an ergodic DTMC (e.g., a DTMC with all the tran-

sition probabilities being non-zero) can be transformed into an infinitesimal generator

matrix of the corresponding CTMC as follows:

Q = P− I, (5.13)

where I is the identity matrix. Next, using the definitions given in this section, a Markov

chain model for the host overload detection problem is introduced.

5.6.2 The Host Model

Each VM allocated to a host at each point in time utilizes a part of the CPU capacity

determined by the application workload. The CPU utilization created over a period of

time by a set of VMs allocated to a host constitutes the host’s workload. For the initial

128 The Markov Host Overload Detection Algorithm

analysis, it is assumed that the workload is known a priori, stationary, and satisfies the

Markov property. In other words, the CPU utilization of a host measured at discrete time

steps can be described by a single time-homogeneous DTMC.

There is a controller component, which monitors the CPU utilization of the host and

according to a host overload detection algorithm decides when a VM should be migrated

from the host to satisfy the QoS requirements, while maximizing the time between VM

migrations. According to Section 5.5, the problem formulation is limited to a single VM

migration, i.e., the time span of a problem instance is from the end of a previous VM

migration to the end of the next.

To describe a host as a DTMC, states are assigned to N subsequent intervals of the

CPU utilization. For example, if N = 11, the state 1 is assigned to all possible values of the

CPU utilization within the interval [0%, 10%), 2 to the CPU utilization within [10%, 20%),

. . . , N to the value 100%. The state space S of the DTMC contains N states, which corre-

spond to the defined CPU utilization intervals. Using this state definition and knowing

the workload of a host in advance, by applying the Maximum Likelihood Estimation

(MLE) method it is possible to derive a matrix of transition probabilities P. The matrix

is constructed by estimating the probabilities of transitions p̂ij =
cij

∑k∈S cik
between the de-

fined N states of the DTMC for i, j ∈ S , where cij is the number of transitions between

states i and j.

An additional state (N + 1) is added to the Markov chain called an absorbing state. A

state k ∈ S is said to be an absorbing state if and only if no other state of the Markov

chain can be reached from it, i.e., pkk = 1. In other words, once the Markov chain

reaches the state k, it stays in that state indefinitely. The resulting extended state space

is S∗ = S ∪ {(N + 1)}. For the problem discussed in this chapter, the absorbing state

(N + 1) represents the state where the DTMC transitions once a VM migration is initi-

ated. According to this definition, the control policy can be described by a vector of the

probabilities of transitions from any non-absorbing state to the absorbing state (N + 1),

i.e., the probabilities of VM migrations, which are denoted mi, where i ∈ S . To add the

state (N + 1) into the model, the initial transition probability matrix P is extended with

a column of unknown transition probabilities m = [mi] ∀i ∈ S resulting in an extended

matrix of transition probabilities P∗:

5.6 A Markov Chain Model for Host Overload Detection 129

P∗ =

p∗11 · · · p∗1N m1
...

. . .
...

...

p∗N1 · · · p∗NN mN

0 0 0 1

 , (5.14)

where p∗ij are defined as follows:

p∗ij = pij(1−mi), ∀i, j ∈ S . (5.15)

In general, the workload experienced by the host’s VMs can lead to any CPU utiliza-

tion from 0% to 100%; therefore, the original DTMC can be assumed to be ergodic. Later,

the extended DTMC will be restricted to the states in S ; therefore, using Q = P− I [24],

the extended matrix of transition probabilities P∗ can be transformed into a correspond-

ing extended matrix of transition rates Q∗:

Q∗ =

p∗11 − 1 · · · p∗1N m1

...
. . .

...
...

p∗N1 · · · p∗NN − 1 mN

0 0 0 0

 . (5.16)

In the next section, a QoS constraint is formulated in terms of the introduced model,

derived extended matrix of transition rates Q∗, and OTF metric.

5.6.3 The QoS Constraint

Let

L(t) =
∫ t

0
π(u)du, (5.17)

then Li(t) denotes the total expected time the CTMC spends in the state i during the in-

terval [0, t). By integrating an equation for the unconditional state probability vector π(t):

dπ(t)/dt = π(t)Q on both sides, a new differential equation for L(t) is derived [24]:

d L(t)
dt

= L(t)Q + π(0), L(0) = 0. (5.18)

130 The Markov Host Overload Detection Algorithm

The expected time spent by the CTMC before absorption can be calculated by find-

ing the limit LS (∞) = limt→∞ LS (t) restricting the state space to the states in S . The

limit exists due to a non-zero probability of a transition to the absorbing state (N + 1).

However, the limit does not exist for the state (N + 1). Therefore, to calculate LS (∞),

the extended infinitesimal generator matrix Q∗ is restricted to the states in S , resulting

in a matrix Q∗S of the size N × N. The initial probability vector π(0) is also restricted

to the states in S resulting in πS (0). Restricting the state space to non-absorbing states

allows the computation of limt→∞ on both sides of (5.18) resulting in the following linear

equation [24]:

LS (∞)Q∗S = −πS (0). (5.19)

Let N denote the state of a host when it is overloaded, e.g., when the CPU utilization

is equal to 100%, then the expected time spent in the state N before absorption can be

calculated by finding LN(∞) from a solution of the system of linear equations (5.19).

Similarly, the total expected time of the host being active can be found as ∑i∈S Li(∞).

Letting the VM migration time be Tm, the expected OTF can be calculated as follows:

OTF =
Tm + LN(∞)

Tm + ∑i∈S Li(∞)
. (5.20)

5.6.4 The Optimization Problem

By the solution of (5.19), closed-form equations for L1(∞), L2(∞), . . . , LN(∞) are obtained.

The unknowns in these equations are m1, m2, . . . , mN , which completely describe the pol-

icy of the controller. For the problem investigated in this chapter, the utility function is the

total expected time until absorption, as the objective is to maximize the inter-migration

time. To introduce the QoS goal in the problem formulation, a limit M on the maximum

allowed value of the OTF metric is specified as a constraint resulting in the following

optimization problem:

∑
i∈S

Li(∞)→ max

Tm + LN(∞)

Tm + ∑i∈S Li(∞)
≤ M.

(5.21)

5.6 A Markov Chain Model for Host Overload Detection 131

The equations (5.21) form an NLP problem. The solution of this NLP problem is the

vector m of the probabilities of transitions to the absorbing state, which forms the optimal

control policy defined as a PMF m = [mi] ∀i ∈ S . At every time step, the optimal control

policy migrates a VM with the probability mi, where i ∈ S is the current state. The control

policy is deterministic if ∃k ∈ S : mk = 1 and ∀i ∈ S , i 6= k : mi = 0, otherwise the policy

is randomized.

Since the total time until absorption and Tm are non-negative, the problem formula-

tion (5.21) can be simplified to (5.22).

∑
i∈S

Li(∞)→ max

(1−M)(Tm + LN(∞))−M ∑
i∈S

Li(∞) ≤ 0.
(5.22)

5.6.5 Modeling Assumptions

The introduced model allows the computation of the optimal control policy of a host

overload detection controller for a given stationary workload and a given state configu-

ration. It is important to take into account that this result is based on a few fundamental

modeling assumptions. First of all, it is assumed that the system satisfies the Markov

property, or in other words, the sojourn times (i.e., the time a CTMC remains in a state)

are exponentially distributed. Assuming an exponential distribution of sojourn times

may not be accurate in many systems. For instance, state transition delays can be deter-

ministic due to a particular task scheduling, or follow other than exponential statistical

distribution, such as a bell-shaped distribution. Another implication of the Markov prop-

erty is the assumption of memoryless state transitions, which means that the future state

can be predicted solely based on the knowledge of the current state. It is possible to

envision systems, in which future states depend on more than one past state.

Another assumption is that the workload is stationary and known a priori, which does

not hold in typical computing environments. In the next section, it is shown how the

introduced model can be heuristically adapted to handle unknown non-stationary work-

loads. The proposed heuristically adapted model removes the assumption of stationary

and known workloads; however, the assumptions implied by the Markov property must

132 The Markov Host Overload Detection Algorithm

still hold. In Section 5.10, the proposed heuristically adapted model is evaluated, and the

assumptions are tested through a simulation study using real workload traces from more

than a thousand PlanetLab VMs. The simulation results show that the model is efficient

for this type of mixed computing workloads.

With a correct understanding of the basic model assumptions and careful assess-

ment of the applicability of the proposed model to a particular system, an application of

the model can bring substantial performance benefits to the resource management algo-

rithms. As demonstrated by the simulation study in Section 5.10, the proposed approach

outperforms the benchmark algorithms in terms of both the mean inter-migration time

and the precision of meeting the specified QoS goal.

5.7 Non-Stationary Workloads

The model introduced in Section 5.6 works with the assumption that the workload is

stationary and known. However, this is not the case in systems with unknown non-

stationary workloads, such as IaaS. One of the ways to adapt the model defined for

known stationary workloads to the conditions of initially unknown non-stationary work-

loads is to apply the Sliding Window workload estimation approach proposed by Chung

et al. [34]. The base idea is to approximate a non-stationary workload as a sequence of

stationary workloads U = (u1, u2, . . . , uNu) that are enabled one after another. In this

model, the transition probability matrix P becomes a function of the current stationary

workload P(u).

Chung et al. [34] called a policy that makes ideal decisions for a current stationary

workload ui the best adaptive policy. However, the best adaptive policy requires the perfect

knowledge of the whole sequence of workloads U and the times, at which the workloads

change. In reality, a model of a workload ui can only be built based on the observed his-

tory of the system behavior. Moreover, the time at which the current workload changes is

unknown. Therefore, it is necessary to apply a heuristic that achieves results comparable

to the best adaptive policy. According to the Sliding Window approach, a time window of

length lw slides over time always capturing last lw events. Let cij be the observed number

of transitions between states i and j, i, j ∈ S , during the last window lw. Then, apply-

5.7 Non-Stationary Workloads 133

ing the MLE method, the transition probability pij is estimated as p̂ij =
cij

∑k∈S cik
. As the

window length lw → ∞, the estimator p̂ij converges to the real value of the transition

probability pij if the length of the current stationary workload ui is equal to lw [34].

However, the Sliding Window approach introduces 3 sources of errors in the esti-

mated workload:

1. The biased estimation error, which appears when the window length lw is shorter

than the length of a sequence of outliers.

2. The resolution error (referred to as the sampling error by Luiz et al. [80]), which is

introduced due to the maximum precision of the estimates being limited to 1/lw.

3. The adaptation time (referred to as the identification delay by Luiz et al. [80]),

which is a delay required to completely fill the window with new data after a

switch from a stationary workload ui−1 to a new stationary workload ui.

Luiz et al. [80] extended the Sliding Window approach by employing multiple win-

dows with different sizes, where a window to use is selected dynamically using the in-

formation about the previous system state and variances of the estimates obtained from

different windows. They referred to the extended approach as the Multisize Sliding Win-

dow approach. The proposed algorithm dynamically selects the best window size to

eliminate the bias estimate error and benefit from both the small sampling error of large

window sizes and small identification error of small window sizes. In this chapter, the

Multisize Sliding Window approach is applied to the model introduced in Section 5.6 to

adapt it to initially unknown non-stationary workloads.

The calculation of the expected OTF (5.20) is adapted by transforming it to a function

of t ∈ R+ to incorporate the information that is known by the algorithm at the time of

decision making:

OTF(t) =
Tm + y(t) + LN(∞)

Tm + t + ∑i∈S Li(∞)
, (5.23)

where y(t) is a function returning the total time spent in the state N during the time

interval [0, t].

134 The Markov Host Overload Detection Algorithm

1. Previous

State Buffer

4. Window Size

Selector

5. Estimate

Selector

Selected

estimates

New estimate

Variances and acceptable

variances

Estimates

Selected window sizes

st-1

st-1

2. State

Windows

3. Estimate

Windows

st

. . .

Figure 5.1: The Multisize Sliding Window workload estimation

5.7.1 Multisize Sliding Window Workload Estimation

This section briefly introduces the Multisize Sliding Window approach; for more details,

reasoning and analysis please refer to Luiz et al. [80]. A high level view of the estimation

algorithm is shown in Figure 5.1. First of all, to eliminate the biased estimation error, the

previous history is stored separately for each state in S resulting in S state windows Wi, i =

1, 2, . . . , S. Let J, D, and NJ be positive numbers; L = (J, J + D, J + 2D, . . . , J +(NJ− 1)D)

a sequence of window sizes; and lwmax = J + (NJ − 1)D the maximum window size. At

each time t, the Previous State Buffer stores the system state st−1 at the time t − 1 and

controls the window selector, which selects a window Wi such that st−1 = i. The nota-

tion Wk
i (t) denotes the content of the window Wi in a position k at the time t. The se-

lected window shifts its content one position to the right to store the current system state:

Wk+1
i (t) = Wk

i (t), ∀k = 1, . . . , lwmax ; discards the rightmost element W lwmax
i (t); and stores

st in the position W1
i (t). Once the selected state window Wi is updated, new probability

estimates are computed based on this state window for all window sizes as follows:

p̂ij(t, m) =
∑Lm

k=1(W
k
i (t) == j)
Lm

, (5.24)

where “==” is the equivalence operation, i.e., (1 == 1) = 1, (1 == 0) = 0. A computed

probability estimate is stored in NJ out of the SSNJ estimate windows Eijm(t), where i, j ∈

5.7 Non-Stationary Workloads 135

S , and m is the estimate window size index, 1 ≤ m ≤ NJ . NJ estimate windows Eijm(t)

are selected such that st−1 = i and st = j, ∀m = 1, . . . , NJ . Similarly to the update process

of the state windows, the selected estimate windows shift their contents one position

to the right, discard the rightmost element ELm
ijm(t), and store p̂ij(t,Lm) in the position

E1
ijm(t). To evaluate the precision of the probability estimates, the variance S(i, j, t, m) of

the probability estimates obtained from every updated estimate window is estimated:

p̄ij(t, m)) =
1
Lm

Lm

∑
k=1

Ek
ijm(t),

S(i, j, t, m) =
1

Lm − 1

Lm

∑
k=1

(Ek
ijm(t)− p̄ij(t,Lm))

2,

(5.25)

where p̄ij(t, m) is the mean value of the probability estimates calculated from the state

window Wi of length Lm. To determine what values of the variance can be considered to

be low enough, a function of acceptable variance Vac(p̂ij(t, m), m) is defined [80]:

Vac(p̂ij(t, m), m) =
p̂ij(t,Lm)(1− p̂ij(t,Lm))

Lm
. (5.26)

Using the function of acceptable variance, probability estimates are considered to be

adequate if S(i, j, t, m) ≤ Vac(p̂ij(t, m), m). Based on the definitions given above, a win-

dow size selection algorithm can be defined (Algorithm 3). According to the selected

window sizes, transition probability estimates are selected from the estimate windows.

Algorithm 3 The window size selection algorithm

Input: J, D, NJ , t, i, j
Output: The selected window size

1: lw ← J
2: for k = 0 to NJ − 1 do
3: if S(i, j, t, k) ≤ Vac(p̂ij(t, k), k) then
4: lw ← J + kD
5: else
6: break loop
7: return lw

The presented approach addresses the errors mentioned in Section 5.7 as follows:

1. The biased estimation error is eliminated by introducing dedicated history win-

dows for each state: even if a burst of transitions to a particular state is longer

136 The Markov Host Overload Detection Algorithm

than the length of the window, the history of transitions from the other states is

preserved.

2. The sampling error is minimized by selecting the largest window size constrained

by the acceptable variance function.

3. The identification error is minimized by selecting a smaller window size when the

variance is high, which can be caused by a change to the next stationary workload.

5.8 The Control Algorithm

A control algorithm based on the model introduced in Section 5.6 is referred to as the

Optimal Markov Host Overload Detection (MHOD-OPT) algorithm. The MHOD-OPT

algorithm adapted to unknown non-stationary workloads using the Multisize Sliding

Window workload estimation technique introduced in Section 5.7 is referred to as the

Markov Host Overload Detection (MHOD) algorithm. A high-level view of the MHOD-

OPT algorithm is shown in Algorithm 4. In the online setting, the algorithm is invoked

periodically at each time step to make a VM migration decision.

Algorithm 4 The MHOD-OPT algorithm

Input: Transition probabilities
Output: A decision on whether to migrate a VM

1: Build the objective and constraint functions
2: Invoke the brute-force search to find the m vector
3: if a feasible solution exists then
4: Extract the VM migration probability
5: if the probability is < 1 then
6: return false
7: return true

Closed-form equations for L1(∞), L2(∞), . . . , LN(∞) are precomputed offline from (5.19);

therefore, the run-time computation is not required. The values of transition probabil-

ities are substituted into the equations for L1(∞), L2(∞), . . . , LN(∞), and the objective

and constraint functions of the NLP problem are generated by the algorithm. To solve

the NLP problem, a brute-force search algorithm with a step of 0.1 is applied, as its per-

formance was sufficient for the purposes of simulations. In MHOD-OPT, a decision to

migrate a VM is made only if either no feasible solution can be found, or the migration

5.9 The CPU model 137

probability corresponding to the current state is 1. The justification for this is the fact

that if a feasible solution exists and the migration probability is less than 1, then for the

current conditions there is no hard requirement for an immediate migration of a VM.

Algorithm 5 The MHOD algorithm

Input: A CPU utilization history
Output: A decision on whether to migrate a VM

1: if the CPU utilization history size > Tl then
2: Convert the last CPU utilization value to a state
3: Invoke the Multisize Sliding Window estimation to obtain the estimates of transi-

tion probabilities
4: Invoke the MHOD-OPT algorithm
5: return the decision returned by MHOD-OPT
6: return false

The MHOD algorithm shown in Algorithm 5 can be viewed as a wrapper over the

MHOD-OPT algorithm, which adds the Multisize Sliding Window workload estimation.

During the initial learning phase Tl , which in this experiments of this chapter was set

to 30 time steps, the algorithm does not migrate a VM. Once the learning phase is over,

the algorithm applies the Multisize Sliding Window technique to estimate the probabili-

ties of transitions between the states and invokes the MHOD-OPT algorithm passing the

transition probability estimates as the argument. The result of the MHOD-OPT algorithm

invocation is returned to the user.

5.9 The CPU model

The models and algorithms proposed in this chapter are suitable for both single core and

multi-core CPU architectures. The capacity of a single core CPU is modeled in terms of

its clock frequency F. A VM’s CPU utilization ui is relative to the VM’s CPU frequency

fi and is transformed into a fraction of the host’s CPU utilization U. These fractions are

summed up over the N VMs allocated to the host to obtain the host’s CPU utilization, as

shown in (5.27).

U = F
N

∑
i

fiui. (5.27)

For the purpose of the host overload detection problem, multi-core CPUs are modeled

138 The Markov Host Overload Detection Algorithm

Table 5.1: An artificial non-stationary workload

0-60 s 60-86 s 86-160 s

p00 1.0 0.0 1.0
p01 0.0 1.0 0.0
p10 1.0 0.0 1.0
p11 0.0 1.0 0.0

as proposed in Chapter 4. A multi-core CPU with n cores each having a frequency f

is modeled as a single core CPU with the n f frequency. In other words, F in (5.27) is

replaced by n f . This simplification is justified, as applications and VMs are not tied down

to a specific core, but can by dynamically assigned to an arbitrary core by a time-shared

scheduling algorithm. The only physical constraint is that the CPU capacity allocated

to a VM cannot exceed the capacity of a single core. Removing this constraint would

require the VM to be executed on more than one core in parallel. However, automatic

parallelization of VMs and their applications cannot be assumed.

5.10 Performance Evaluation

5.10.1 Importance of Precise Workload Estimation

The purpose of this section is to show that the precision of the workload estimation tech-

nique is important to achieve high performance of the MHOD algorithm. To show this,

an artificial workload was constructed that illustrates a case when the MHOD algorithm

with the Multisize Sliding Window workload estimation leads to lower performance

compared to MHOD-OPT due to its inability to adapt quickly enough to a highly non-

stationary workload.

it is defined that the host can be in one of two possible states {0, 1}, where the state 1

means that the host is being overloaded. Let the non-stationary workload be composed of

a sequence of three stationary workloads, whose probabilities of transitions between the

states are shown in Table 5.1. Simulations were used to evaluate the algorithms. For this

experiment, the OTF constraint was set to 30%, and the sequence of window sizes for the

Multisize Sliding Window workload estimation was (30, 40, 50, 60, 70, 80, 90, 100). The

5.10 Performance Evaluation 139

Table 5.2: Comparison of MHOD, MHOD-OPT and OPT

MHOD-30 MHOD-OPT-30 OPT-30

OTF 29.97% 16.30% 16.30%
Time 87 160 160

16012080400

1.00

0.75

0.50

0.25

0.00

16012080400

1.00

0.75

0.50

0.25

0.00

Probabilities from state 0 to 0

Time

Probabilities from state 1 to 1

Estimates from state 0 to 0 Estimates from state 1 to 1

Figure 5.2: The estimated p̂00 compared to p00

code of the simulations is written in Clojure2. To foster and encourage reproducibility of

experiments, the source code of the simulations has been made publicly available online3.

The simulation results are shown in Table 5.2. According to the results, for the work-

load defined in Table 5.1 the MHOD-OPT algorithm provides exactly the same perfor-

mance as the optimal offline algorithm (OPT). However, the MHOD algorithm migrates

a VM at the beginning of the third stationary workload because it is not able to immedi-

ately recognize the change of the workload, as shown for p00 and p̂00 in Figure 5.2.

In summary, even though the Multisize Sliding Window workload estimation pro-

vides high quality of estimation [80], in some cases it may result in an inferior perfor-

mance of the MHOD algorithm compared to MHOD-OPT. This result was expected, as

MHOD-OPT skips the estimation phase and utilizes the knowledge of real transition

probabilities. The artificial workload used in this section was specifically constructed

to show that imprecise workload estimation may lead to unsatisfactory performance of

the MHOD algorithm. However, as shown in the next section, the MHOD algorithm

performs closely to OPT for real-world workloads.

2The Clojure programming language. http://clojure.org/
3The simulation source code. http://github.com/beloglazov/tpds-2013-simulation/

http://clojure.org/
http://github.com/beloglazov/tpds-2013-simulation/

140 The Markov Host Overload Detection Algorithm

5.10.2 Evaluation Using PlanetLab Workload Traces

In an environment with multiple hosts, the MHOD algorithm operates in a decentral-

ized manner, where independent instances of the algorithm are executed on every host.

Therefore, to evaluate the MHOD algorithm under a real-world workload, a single host

with a quad-core CPU serving a set of heterogeneous VMs was simulated. The clock

frequency of a single core of the host was set to 3 GHz, which according to the model

introduced in Section 5.9 transforms into 12 GHz. These CPU characteristics correspond

to a mid-range Amazon EC2 physical server type [82]. The amount of the host’s memory

was assumed to be enough for the VMs. The CPU frequency of a VM was randomly set

to one of the values approximately corresponding to the Amazon EC2 instance types4:

1.7 GHz, 2 GHz, 2.4 GHz, and 3 GHz. The CPU utilization of the VMs was simulated

based on the data provided as a part of the CoMon project, a monitoring infrastructure

for PlanetLab [92]. The project provides the data measured every 5 minutes from more

than a thousand VMs running in more than 500 locations around the world. For the

experiments of this chapter, 10 days were randomly selected from the workload traces

collected during March and April 2011.

For a simulation run, a randomly generated set of VMs with the CPU utilization traces

assigned is allocated to the host. At each time step, the host overload detection algorithm

makes a decision of whether a VM should be migrated from the host. The simulation

runs until either the CPU utilization traces are over, or until a decision to migrate a VM

is made by the algorithm. At the end of a simulation run, the resulting value of the OTF

metric is calculated according to (5.5). The algorithm of assigning the workload traces to

a set of VMs is presented in Algorithm 6. To avoid trivial cases and stress the algorithms

with more dynamic workloads, the original workload traces were filtered. The maximum

allowed OTF after the first 30 time steps was constrained to 10% and the minimum overall

OTF was constrained to 20%. Using the workload assignment algorithm, 100 different

sets of VMs that meet the defined OTF constraints were pregenerated. Every algorithm

was run for each set of VMs. The workload data used in the experiments are publicly

available online5.

4Amazon EC2 instance types. http://aws.amazon.com/ec2/instance-types/
5The workload data. http://github.com/beloglazov/tpds-2013-workload/

http://aws.amazon.com/ec2/instance-types/
http://github.com/beloglazov/tpds-2013-workload/

5.10 Performance Evaluation 141

Algorithm 6 The workload trace assignment algorithm

Input: A set of CPU utilization traces
Output: A set of VMs

1: Randomly select the host’s minimum CPU utilization at the time 0 from 80%, 85%,
90%, 95%, and 100%

2: while the host’s utilization < the threshold do
3: Randomly select the new VM’s CPU frequency
4: Randomly assign a CPU utilization trace
5: Add the new VM to the set of created VMs
6: return the set of created VMs

Benchmark Algorithms

In addition to the optimal offline algorithm introduced in Section 5.5, a number of bench-

mark algorithms were implemented. The benchmark algorithms were run with different

parameters to compare with the proposed MHOD algorithm. This section gives a brief

overview of the benchmark algorithms; a detailed description of each of them is given

in Chapter 4. The first algorithm is a simple heuristic based on setting a CPU utilization

threshold (THR), which monitors the host’s CPU utilization and migrates a VM if the de-

fined threshold is exceeded. This threshold-based heuristic was applied in a number of

related works [54, 55, 121, 135]. The next two algorithms apply statistical analysis to dy-

namically adapt the CPU utilization threshold: based on the median absolute deviation

(MAD), and on the interquartile range (IQR).

Two other algorithms are based on estimation of the future CPU utilization using local

regression and a modification of the method robust to outliers, referred to as robust local

regression. These algorithms are denoted Local Regression (LR) and Local Regression Ro-

bust (LRR) respectively. The LR algorithm is in line with the regression-based approach

proposed by Guenter et al. [57]. Another algorithm continuously monitors the host’s

OTF and decides to migrate a VM if the current value exceeds the defined parameter.

This algorithm is referred to as the OTF Threshold (OTFT) algorithm. The last bench-

mark algorithm, the OTF Threshold Migration Time (OTFTM) algorithm, is similar to

OTFT; however, it uses an extended metric that includes the VM migration time:

OTF(to, ta) =
Tm + to

Tm + ta
, (5.28)

142 The Markov Host Overload Detection Algorithm

O
PT-3

0

O
PT-2

0

O
PT-1

0

M
H

O
D

-3
0

M
H

O
D

-2
0

M
H

O
D

-1
0

LR
R
-0

.8
5

LR
R
-0

.9
5

LR
R
-1

.0
5

LR
-0

.8
5

LR
-0

.9
5

LR
-1

.0
5

IQ
R
-2

.0

IQ
R
-1

.0

M
A

D
-3

.0

M
A

D
-2

.0

TH
R
-1

00

TH
R
-9

0

TH
R
-8

0

50%

40%

30%

20%

10%

0%

Algorithm

R
es

u
lt

in
g

 O
T

F
 v

a
lu

e

(a) The resulting OTF value

O
PT-3

0

O
PT-2

0

O
PT-1

0

M
H

O
D

-3
0

M
H

O
D

-2
0

M
H

O
D

-1
0

LR
R
-0

.8
5

LR
R
-0

.9
5

LR
R
-1

.0
5

LR
-0

.8
5

LR
-0

.9
5

LR
-1

.0
5

IQ
R
-2

.0

IQ
R
-1

.0

M
A

D
-3

.0

M
A

D
-2

.0

TH
R
-1

00

TH
R
-9

0

TH
R
-8

0

90

80

70

60

50

40

30

20

10

0

Algorithm

T
im

e
u

n
ti

l
a

 m
ig

ra
ti

o
n

,
x

1
0

0
0

 s

(b) The time until a migration

Figure 5.3: The resulting OTF value and time until a migration produced by the MHOD
and benchmark algorithms

where to is the time, during which the host has been overloaded; ta is the total time,

during which the host has been active; and Tm is the VM migration time.

MHOD Compared with Benchmark Algorithms

To shorten state configuration names of the MHOD algorithm, they are referred to by

denoting the thresholds between the utilization intervals. For example, a 3-state con-

figuration ([0%, 80%), [80%, 100%), 100%) is referred to as 80-100. The following 2- and

3-state configurations of the MHOD algorithm were simulated: 80-100, 90-100, and 100 (a

2-state configuration). Each state configuration with the OTF parameter set to 10%, 20%

and 30% was simulated. For experiments, the VM migration time was set to 30 seconds.

In order to find out whether different numbers of states and different state configu-

rations of the MHOD algorithm significantly influence the algorithm’s performance in

regard to the time until a migration and the resulting OTF value, paired t-tests were con-

ducted. The tests on the produced time until a migration data for comparing MHOD

80-100 with MHOD 100 and MHOD 90-100 with MHOD 100 showed non-statistically

significant differences with the p-values 0.20 and 0.34 respectively. This means that the

simulated 2- and 3-state configurations of the MHOD algorithm on average lead to ap-

proximately the same time until a migration. However, there are statistically significant

differences in the resulting OTF value produced by these algorithms: 0.023% with 95%

Confidence Interval (CI) (0.001%, 0.004%) and p-value = 0.033 for MHOD 100 compared

5.10 Performance Evaluation 143

Table 5.3: Paired T-tests with 95% CIs for comparing the time until a migration produced
by MHOD, LR and LRR

Alg. 1 (×103) Alg. 2 (×103) Diff. (×103) p-value

MHOD (39.64) LR (44.29) 4.65 (2.73, 6.57) < 0.001
MHOD (39.23) LRR (44.23) 5.00 (3.09, 6.91) < 0.001

with MHOD 80-100; and 0.022% with 95% CI (0.000%, 0.004%) and p-value = 0.048 for

MHOD 100 compared with MHOD 90-100. However, differences in the resulting OTF

value in the order of less than 0.1% are not practically significant; therefore, the con-

clusion is that the simulated 2- and 3-state configurations produce approximately the

same results. Further in this section, only the ([0%, 100%), 100%) 2-state configuration of

MHOD is compared with the benchmark algorithms, as it requires simpler computations

compared with the 3-state configurations.

The experimental results comparing the 2-state configuration of the MHOD algorithm

(for the MHOD algorithm, the OTF parameter is denoted in the suffix of the algorithm’s

name, e.g., for 10%, 20% and 30%: MHOD-10, MHOD-20 and MHOD-30) with the bench-

mark algorithms are depicted in Figures 5.3a and 5.3b. It is remarkable how closely the

resulting OTF value of the MHOD algorithm resembles the value set as the parameter of

the algorithm for 10% and 20%. The wider spread for 30% is explained by the character-

istics of the workload: in many cases the overall OTF is lower than 30%, which is also

reflected in the resulting OTF of the optimal offline algorithm (OPT-30). The experimen-

tal results show that the algorithm is capable of meeting the specified OTF goal, which is

consistent with the theoretical model introduced in Section 5.6.

Figures 5.3a and 5.3b show that the THR, MAD and IQR algorithms are not compet-

itive compared with the LR, LRR and MHOD algorithms, as the produced time until a

migration is low and does not significantly improve by adjustments of the algorithm pa-

rameters. To compare the LR and LRR algorithms with the MHOD algorithms, additional

simulations of the MHOD algorithm with the OTF parameter matching the mean value of

the resulting OTF produced by LR and LRR were conducted. The following OTF param-

eter values of the MHOD algorithm were set to match the mean resulting OTF values of

LR and LRR: to match LR-1.05, LR-0.95 and LR-0.85 – 9.9%, 18.2% and 31% respectively;

to match LRR-1.05, LRR-0.95 and LRR-0.85 – 9.9%, 17.9% and 30.4% respectively.

144 The Markov Host Overload Detection Algorithm

Mean OTF

Algorithm

26
.3

%

17
.4

%
9.

0%

M
H

O
D

-3
0.

4

LR
R
-0

.8
5

M
H

O
D

-1
7.

9

LR
R
-0

.9
5

M
H

O
D

-9
.9

LR
R
-1

.0
5

50%

40%

30%

20%

10%

0%

26
.3

%

17
.4

%
9.

0%

M
H

O
D

-3
0.

4

LR
R
-0

.8
5

M
H

O
D

-1
7.

9

LR
R
-0

.9
5

M
H

O
D

-9
.9

LR
R
-1

.0
5

90

80

70

60

50

40

30

20

10

0

Resulting OTF value

9.0%

17.4%

26.3%

Time until a migration, x1000 s

Figure 5.4: Comparison of MHOD with LRR

As intended, paired t-tests for the comparison of MHOD with LR and MHOD with

LRR showed non-statistically significant differences in the resulting OTF values with

both p-values > 0.9. Results of paired t-tests for comparing the time until a migration

produced by the algorithms with matching resulting OTF values are shown in Table 5.3.

The MHOD and LRR algorithms are graphically compared in Figure 5.4.

According to the results, there is a statistically significant difference in the time un-

til a migration produced by the algorithms: the MHOD algorithm on average leads to

approximately 10.5% and 11.3% shorter time until a migration than LR and LRR respec-

tively with the same mean resulting OTF values. This means that the MHOD algorithm

leads to a slightly lower quality of VM consolidation compared with the LR and LRR

algorithms, while providing the advantage of explicit specification of a QoS goal in terms

of the OTF metric. In contrast, the performance of the LR and LRR algorithms in regard

to the QoS can only be adjusted indirectly by tuning the safety parameter. As seen in

Figure 5.4, the lower time until a migration produced of the MHOD algorithm can be

partially explained by the fact that the spread of the resulting OTF produced by the LRR

algorithm is much wider than that of MHOD, while MHOD precisely meets the specified

QoS goal. This means that in many cases LRR provides worse QoS than MHOD, which

leads to a higher time until a migration.

5.10 Performance Evaluation 145

OTF

Algorithm

30
%

20
%

10
%

M
H

O
D

O
TFTM

O
TFT

M
H

O
D

O
TFTM

O
TFT

M
H

O
D

O
TFTM

O
TFT

30%

25%

20%

15%

10%

30
%

20
%

10
%

M
H

O
D

O
TFTM

O
TFT

M
H

O
D

O
TFTM

O
TFT

M
H

O
D

O
TFTM

O
TFT

90

80

70

60

50

40

30

20

10

0

Resulting OTF value Time until a migration, x1000 s

Figure 5.5: Comparison of OTFT, OTFTM and MHOD

Comparison of MHOD with OTFT and OTFTM

OTFT and OTFTM are two other algorithms that apart from the MHOD algorithm allow

explicit specification of the QoS goal in terms of the OTF parameter. To compare the

performance of the OTFT, OTFTM and MHOD algorithms, another performance metrics

introduced. This metric is the percentage of SLA violations relatively to the total number

of VM migrations, where SLA requirements are defined as OTF ≤ M, M is the limit on

the maximum allowed resulting OTF value. The SLA violation counter is incremented if

after a VM migration the resulting OTF is higher than the value M specified in the SLAs.

The OTFT, OTFTM and MHOD algorithms were simulated using the PlanetLab work-

load described earlier. The algorithms were simulated with the following values of the

OTF parameter set as the SLA requirement: 10%, 20% and 30%. The simulation results

are shown in Figure 5.5. The graphs show that MHOD leads to slightly lower resulting

OTF values and time until a migration. The SLA violation levels caused by the algorithms

are shown in Table 5.4. It is clear that the MHOD algorithm substantially outperforms

the OTFT and OTFTM algorithms in the level of SLA violations leading to only 0.33%

SLA violations, whereas both OTFT and OTFTM cause SLA violations of 81.33%.

The obtained results can be explained by the fact that both OTFT and OTFTM are

unable to capture the overall behavior of the system over time and fail to meet the SLA

requirements. In contrast, the MHOD algorithm leverages the knowledge of the past

146 The Markov Host Overload Detection Algorithm

system states and by estimating future states avoids SLA violations. For instance, in

a case of a steep rise in the load, OTFT and OTFTM react too late resulting in an SLA

violation. In contrast, MHOD acts more intelligently and by predicting the potential rise

migrates a VM before an SLA violation occurs. As a result, for the simulated PlanetLab

workload the MHOD algorithm keeps the level of SLA violations at less than 0.5%.

Comparison of MHOD with OPT

Figures 5.3a and 5.3b include the results produced by the optimal offline algorithm (OPT)

for the same values of the OTF parameter set for the MHOD algorithm: 10%, 20% and

30%. The results of paired t-tests comparing the performance of OPT with MHOD are

shown in Table 5.5. The results show that there is no statistically significant difference

in the resulting OTF value, which means that for the simulated PlanetLab workload the

MHOD algorithm on average leads to approximately the same level of adherence to the

QoS goal as the optimal offline algorithm.

There is a statistically significant difference in the time until a migration with the

mean difference of 4,639 with 95% CI: (3617, 5661). Relatively to OPT, the time until a

migration produced by the MHOD algorithm converts to 88.02% with 95% CI: (86.07%,

89.97%). This means that for the simulated PlanetLab workload, the MHOD algorithm on

average delivers approximately 88% of the performance of the optimal offline algorithm,

which is highly efficient for an online algorithm.

5.11 Conclusions

In this chapter, a Markov chain model and control algorithm have been proposed for the

problem of host overload detection as a part of dynamic VM consolidation. The model

Table 5.4: SLA violations by OTFT, OTFTM and MHOD

OTF Parameter OTFT OTFTM MHOD

10% 100/100 100/100 0/100
20% 100/100 100/100 1/100
30% 44/100 44/100 0/100

Overall 81.33% 81.33% 0.33%

5.11 Conclusions 147

Table 5.5: Paired T-tests for comparing MHOD with OPT

OPT MHOD Difference p-value

OTF 18.31% 18.25% 0.06% (-0.03, 0.15) = 0.226
Time 45,767 41,128 4,639 (3617, 5661) < 0.001

allows a system administrator to explicitly set a QoS goal in terms of the OTF parameter,

which is a workload independent QoS metric. For a known stationary workload and a

given state configuration, the control policy obtained from the Markov model optimally

solves the host overload detection problem in the online setting by maximizing the mean

inter-migration time, while meeting the QoS goal.

Using the Multisize Sliding Window workload estimation approach, the model has

been heuristically adapted to handle unknown non-stationary workloads. In addition, an

optimal offline algorithm for the problem of host overload detection has been proposed

to evaluate the efficiency of the MHOD algorithm. The conducted experimental study

has led to the following conclusions:

1. For the simulated PlanetLab workload, 3-state configurations of the MHOD al-

gorithm on average produce approximately the same results as the ([0, 100), 100)

2-state configuration of the MHOD algorithm; therefore, the 2-state configuration

is preferred, as it requires simpler computations.

2. The 2-state configuration of the MHOD algorithm leads to approximately 11%

shorter time until a migration than the LRR algorithm, the best benchmark algo-

rithm. However, the MHOD algorithm provides the advantage of explicit speci-

fication of a QoS goal in terms of the OTF metric. In contrast, the performance of

the LR and LRR algorithms in regard to the QoS can only be adjusted indirectly

by tuning the safety parameter. Moreover, the spread of the resulting OTF value

produced by the MHOD algorithm is substantially narrower compared with the

LR and LRR algorithms, which means the MHOD algorithm more precisely meets

the QoS goal.

3. The MHOD algorithm substantially outperforms the OTFT and OTFTM algorithms

in the level of SLA violations resulting in less than 0.5% SLA violations compared

to 81.33% of OTFT and OTFTM.

4. The MHOD algorithm on average provides approximately the same resulting OTF

148 The Markov Host Overload Detection Algorithm

value and approximately 88% of the time until a VM migration produced by the

optimal offline algorithm (OPT).

5. The MHOD algorithm enables explicit specification of a desired QoS goal to be

delivered by the system through the OTF parameter, which is successfully met by

the resulting value of the OTF metric.

The introduced model is based on Markov chains requiring a few fundamental as-

sumptions. It is assumed that the workload satisfies the Markov property, which may

not be true for all types of workloads. Careful assessment of the assumptions discussed

in Section 5.6.5 is important in an investigation of the applicability of the proposed model

to a particular system. However, the experimental study involving multiple mixed het-

erogeneous real-world workloads has shown that the algorithm is efficient in handling

them. For the simulated PlanetLab workload the MHOD algorithm performed within a

12% difference from the performance of the optimal offline algorithm, which is highly

efficient for an online algorithm. In the next chapter, the MHOD algorithm is imple-

mented and evaluated as part of a framework for dynamic VM consolidation tailored to

OpenStack Clouds6.

6The OpenStack Cloud platform. http://openstack.org/

http://openstack.org/

Chapter 6

OpenStack Neat: A Framework for
Distributed Dynamic

VM Consolidation

The previous chapters have introduced a distributed approach to energy-efficient dynamic VM con-

solidation and several algorithms for each of the 4 sub-problems, namely, host underload / overload

detection, VM selection, and VM placement. This chapter presents OpenStack Neat, a framework for

distributed dynamic VM consolidation in OpenStack Clouds. The implementation of the framework

includes the algorithms proposed in the previous chapters. The architecture and implementation of

the framework are described in detail, followed by an experimental evaluation on a 5-node OpenStack

installation using workload traces from PlanetLab VMs.

6.1 Introduction

THIS chapter introduces an architecture and implementation of OpenStack Neat1,

an open source software framework for distributed dynamic VM consolidation in

Cloud data centers based on the OpenStack platform2. The framework is designed and

implemented as a transparent add-on to OpenStack, which means that the OpenStack

installation need not be modified or specifically configured to benefit from OpenStack

Neat. Figure 6.1 depicts a typical deployment of the key components of OpenStack and

OpenStack Neat, which may include multiple instances of compute and controller hosts.

The framework acts independently of the base OpenStack platform and applies VM con-

solidation processes by invoking public Application Programming Interfaces (APIs) of

OpenStack. The purpose of the OpenStack Neat framework is twofold: (1) providing a

1The OpenStack Neat framework. http://openstack-neat.org/
2The OpenStack Cloud platform. http://openstack.org/

149

http://openstack-neat.org/
http://openstack.org/

150 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Figure 6.1: The combined deployment of OpenStack and OpenStack Neat

fully operational open source software for dynamic VM consolidation that can be applied

to existing OpenStack Clouds; and (2) providing an extensible software framework for

conducting research on dynamic VM consolidation.

OpenStack Neat is designed and implemented following the distributed approach to

dynamic VM consolidation introduced and evaluated Chapters 4 and 5. The target envi-

ronment is an Infrastructure as a Service (IaaS), e.g., Amazon EC2, where the provider is

unaware of applications and workloads served by the VMs, and can only observe them

from outside. The proposed approach to distributed dynamic VM consolidation consists

in splitting the problem into 4 sub-problems: underload / overload detection, VM selec-

tion, and VM placement, as discussed in Chapter 4.

In addition, to facilitate research efforts and future advancements in the area of dy-

namic VM consolidation, this chapter outlines a benchmark suite for evaluating and com-

6.1 Introduction 151

paring dynamic VM consolidation algorithms comprising OpenStack Neat as the base

software framework, real-world workload traces from PlanetLab, performance metrics,

and evaluation methodology, as discussed in Section 6.6.

The key contributions of this chapter are the following:

• An architecture of an extensible software framework for dynamic VM consolida-

tion designed to transparently integrate with OpenStack installations and allow-

ing configuration-based substitution of multiple implementations of algorithms for

each of the 4 defined sub-problems of dynamic VM consolidation.

• An open source software implementation of the framework in Python released un-

der the Apache 2.0 license and publicly available online3.

• An implementation of several algorithms for dynamic VM consolidation proposed

and evaluated by simulations in the previous chapters.

• An initial version of a benchmark suite comprising the software framework, work-

load traces, performance metrics, and methodology for evaluating and comparing

dynamic VM consolidation solutions following the distributed model.

• Experimental evaluation of the framework on a 5-node OpenStack deployment

using real-world application workload traces collected from more than a thou-

sand PlanetLab VMs hosted on servers located in more than 500 places around the

world [92]. According to the estimates of potential energy savings, the algorithms

reduce energy consumption by up to 33% with a limited performance impact.

The current implementation of OpenStack Neat assumes a single instance of the con-

troller responsible for placing VMs selected for migrations on hosts. However, due to

distributed underload / overload detection and VM selection algorithms, the overall

scalability is significantly improved compared with existing centralized solutions. Fur-

thermore, it is potentially possible to implement replication of OpenStack Neat’s global

manager, which would provide a completely distributed system, as discussed in Sec-

tion 6.7.4.

The remainder of the chapter is organized as follows. The next section discusses the

related work, followed by the overall design and details of each component of the Open-

Stack Neat framework in Section 6.3. Section 6.4 describes the implemented VM consol-

3The OpenStack Neat framework. http://openstack-neat.org/

http://openstack-neat.org/

152 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

idation algorithms. Section 6.5 discusses software development techniques and libraries

applied in the implementation of the framework. Section 6.6 proposes a benchmark suite

for evaluating distributed dynamic VM consolidation algorithms. The experimental eval-

uation of the framework and analysis of the results are presented in Section 6.7. The

chapter is concluded with a summary and discussion of future directions.

6.2 Related Work

Research work related to this paper can be divided into two categories: (1) theoretical

work on various approaches to dynamic VM consolidation; and (2) practically imple-

mented and publicly available open source software systems. The first category of work

has been discussed in detail in Chapter 2. The framework presented in this chapter fol-

lows the distributed approach to dynamic VM consolidation proposed in the previous

chapters, where every compute host locally solves the problems of underload / overload

detection and VM selection. Then, it sends a request to a global manager to place only

the selected for migration VMs on other hosts.

A similar approach was followed by Wood et al. [129] in their system called Sand-

piper aimed at load balancing in virtualized data centers using VM live migration. The

main objective of the system is to avoid host overloads referred to as hot spots by de-

tecting them and migrating overloaded VMs to less loaded hosts. The authors applied

an application-agnostic approach, referred to as a black-box approach, in which VMs are

observed from outside, without any knowledge of applications resident in the VMs. A

hot spot is detected when the aggregate usage of a host’s resources exceeds the speci-

fied threshold for k out of n last measurements, as well as for the next predicted value.

Another proposed approach is gray-box, when a certain application-specific data are al-

lowed to be collected. The VM placement is computed heuristically by placing the most

loaded VM to the least loaded host. The difference from the approach proposed in this

chapter is that VMs are not consolidated; therefore, the number of active hosts is not

reduced to save energy.

Despite the large volume of research published on the topic of dynamic VM consol-

idation, there are very few software implementations publicly available online. One of

6.2 Related Work 153

the earliest open source implementation of a VM consolidation manager is the Entropy

project4. Entropy is an open source VM consolidation manager for homogeneous clus-

ters developed by Hermenier et al. [59] and released under the LGPL license. Entropy is

built on top of Xen and focused on two objectives: (1) maintaining a configuration of the

cluster, where all VMs are allocated sufficient resources; and (2) minimizing the number

of active hosts.

To optimize the VM placement, Entropy applies a two-phase approach. First, a con-

straint programming problem is solved to find an optimal VM placement, which mini-

mizes the number of active hosts. Then, another optimization problem is solved to find a

target cluster configuration with the minimal number of active hosts that also minimizes

the total cost of reconfiguration, which is proportional to the cost of VM migrations. In

comparison to OpenStack Neat, Entropy may find a more optimal VM placement by

computing a globally optimal solution for VM placement. However, the required opti-

mization problems must be solved by a central controller with limited opportunities for

replication, thus limiting the scalability of the system and introducing a single point of

failure. This approach is applicable to relatively small-scale private Clouds; however, it

cannot be applied to large-scale data centers with tens of thousands of nodes, such as

Rackspace [99], where decentralization and fault-tolerance are essential.

Feller et al. [46, 47] proposed and implemented a framework for distributed manage-

ment of VMs for private Clouds called Snooze5, which is open source and released under

the GPL v2 license. In addition to the functionality provided by the existing Cloud man-

agement platforms, such as OpenStack, Eucalyptus, and OpenNebula, Snooze imple-

ments dynamic VM consolidation as one of its base features. Another difference is that

Snooze implements hierarchical distributed resource management. The management hi-

erarchy is composed of three layers: local controllers on each physical node; group man-

agers managing a set of local controllers; and a group leader dynamically selected from

the set of group managers and performing global management tasks. The distributed

structure enables fault-tolerance and self-healing by avoiding single points of failure and

automatically selecting a new group leader if the current one fails.

Snooze also integrates monitoring of the resource usage by VMs and hosts, which

4The Entropy VM manager. http://entropy.gforge.inria.fr/
5The Snooze Cloud manager. http://snooze.inria.fr/

http://entropy.gforge.inria.fr/
http://snooze.inria.fr/

154 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

can be leveraged by VM consolidation policies. These policies are intended to be imple-

mented at the level of group managers, and therefore can only be applied to subsets of

hosts. This approach partially solves the problem of scalability of VM consolidation by

the cost of losing the ability of optimizing the VM placement across all the nodes of the

data center. OpenStack Neat enables scalability by distributed underload / overload de-

tection and VM selection, and potentially replicating the VM placement controllers. In

contrast to Snooze, it is able to apply global VM placement algorithms for the selected

for migration VMs by taking into account the full set of hosts. Another difference is that

OpenStack Neat transparently integrates with OpenStack, an established open source

Cloud platform widely adopted and supported by the industry, thus ensuring long-term

development of the platform.

6.3 System Design

The aim of the OpenStack Neat project is to provide an extensible framework for dy-

namic consolidation of VMs based on the OpenStack platform. Extensibility in this con-

text means the ability to implement new VM consolidation algorithms and apply them in

OpenStack Neat without the necessity to modify the source code of the framework itself.

Different implementations of the algorithms can be plugged into the framework by mod-

ifying the appropriate options in the configuration file. More information on configuring

and extending the framework is given in Sections 6.3.8 and 6.3.9 respectively.

OpenStack Neat provides an infrastructure required for monitoring VMs and hyper-

visors, collecting resource usage data, transmitting messages and commands between the

system components, and invoking VM live migrations. The infrastructure is agnostic to

VM consolidation algorithms in use and allows implementing custom decision-making

algorithms for each of the 4 sub-problems of dynamic VM consolidation: host under-

load / overload detection, VM selection, and VM placement. The implementation of the

framework includes the algorithms proposed in the previous chapters. The following

sections discuss the requirements and assumptions, integration of the proposed frame-

work with OpenStack, each of the framework’s components, as well as configuration and

extensibility of the framework.

6.3 System Design 155

6.3.1 Requirements and Assumptions

The components of the framework are implemented in the form of OS services running

on the compute and controller hosts of the data center in addition to the core OpenStack

services. The framework components interact through a Representational State Transfer

(REST) interface; therefore, network communication via the corresponding port specified

in the framework’s configuration must be enabled.

OpenStack Neat relies on live migration to dynamically relocate VMs across physical

machines. To enable live migration, it is required to set up a shared storage and corre-

spondingly configure OpenStack Nova (i.e. the OpenStack Compute service) to use this

storage for storing VM instance data. For instance, a shared storage can be provided

using the Network File System (NFS), or the GlusterFS distributed file system [19].

OpenStack Neat uses a database for storing information about VMs and hosts, as well

as resource usage data. It is possible to use the same database server used by the core

OpenStack services. In this case, it is only required to create a new database and user for

OpenStack Neat. The required database tables are automatically created by OpenStack

Neat on the first launch of its services.

Another requirement is that all the compute hosts must have a user, which is enabled

to switch the host into a low-power mode, such as Suspend to RAM. This user account is

used by the global manager to connect to the compute hosts via the Secure Shell (SSH)

protocol and switch them into the sleep mode when necessary. More information on

deactivating and reactivating physical nodes is given in Section 6.3.4.

Since OpenStack Neat is implemented in Python, VM consolidation algorithms to be

plugged in should also be implemented in Python. It may be required to implement VM

consolidation algorithms in another programming language for various reasons, such as

performance requirements. Integration of such algorithms can be achieved by providing

Python wrappers that redirect calls to the corresponding external programs.

6.3.2 Integration with OpenStack

OpenStack Neat services are installed independently of the core OpenStack services.

Moreover, the activity of the OpenStack Neat services is transparent to the core Open-

156 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Stack services. This means that OpenStack does not need to be configured in a special

way to be able to take advantage of dynamic VM consolidation implemented by Open-

Stack Neat. It also means, that OpenStack Neat can be added to an existing OpenStack

installation without the need to modify its configuration.

The transparency is achieved by the independent resource monitoring implemented

by OpenStack Neat, and the interaction with the core OpenStack services using their

public APIs. The OpenStack APIs are used for obtaining information about the current

state of the system and performing VM migrations. In particular, the APIs are used to

get the current mapping of VMs to hosts, hardware characteristics of hosts, parameters

of VM flavors (i.e., instance types), VM states, and invoke VM live migrations. Although

OpenStack Neat performs actions affecting the current state of the system by relocating

VMs across hosts, it is transparently handled by the core OpenStack services since VM

migrations are invoked via the public OpenStack APIs, which is equivalent to invoking

VM migrations manually by the system administrator.

In the following sections, hosts running the Nova Compute service, i.e., hosting VM

instances, are referred to as compute hosts; and a host running the other OpenStack man-

agement services but not hosting VM instances is referred to as the controller host.

6.3.3 System Components

OpenStack Neat is composed of a number of components and data stores, some of which

are deployed on the compute hosts, and some on the controller host, which can poten-

tially have multiple replicas. As shown in Figure 6.2, the system is composed of three

main components:

• Global manager – a component that is deployed on the controller host and makes

global management decisions, such as mapping VM instances to hosts, and initiat-

ing VM live migrations.

• Local manager – a component that is deployed on every compute host and makes

local decisions, such as deciding that the host is underloaded or overloaded, and

selecting VMs to migrate to other hosts.

• Data collector – a component that is deployed on every compute host and is respon-

sible for collecting data on the resource usage by VM instances and hypervisors,

6.3 System Design 157

Figure 6.2: The deployment diagram

158 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Figure 6.3: The global manager: a sequence diagram of handling an underload request

and then storing the data locally and submitting it to the central database.

The deployment model may vary for each particular system depending on its require-

ments. For instance, the central database can be deployed on a separate physical node,

or be distributed across multiple physical nodes. The location and deployment of the

database server is transparent to OpenStack Neat, which only requires a configuration

parameter to be set to the network address of the database front-end server. For simplic-

ity, in the experimental testbed used in this chapter, the database server is deployed on

the same physical node hosting the global manager, as shown in Figure 6.2.

6.3.4 The Global Manager

The global manager is deployed on the controller host and is responsible for making

VM placement decisions and initiating VM migrations. It exposes a REST web service,

which accepts requests from local managers. The global manager processes two types of

requests: (1) relocating VMs from an underloaded host; and (2) offloading a number of

VMs from an overloaded host.

Figure 6.3 shows a sequence diagram of handling a host underload request by the

6.3 System Design 159

Figure 6.4: The global manager: a sequence diagram of handling an overload request

global manager. First, a local manager detects an underload of the host using the spec-

ified in the configuration underload detection algorithm. Then, it sends an underload

request to the global manager including the name of the underloaded host. The global

manager calls the OpenStack Nova API to obtain the list of VM currently allocated to

the underloaded host. Once the list of VMs is received, the global manager invokes the

VM placement algorithm with the received list of VMs along with their resource usage

and states of hosts fetched from the database as arguments. Then, according to the VM

placement generated by the algorithm, the global manager submits the appropriate VM

live migration requests to the OpenStack Nova API, and monitors the VM migration pro-

cess to determine when the migrations are completed. Upon the completion of the VM

migrations, the global manager switches the now idle source host into the sleep mode

using the procedure described in Section 6.3.4.

As shown in Figure 6.4, handling overload requests is similar to underload requests.

The difference is that instead of sending just the host name, the local manager also sends

a list of UUIDs of the VMs selected by the configured VM selection algorithm to be of-

floaded from the overloaded host. Once the request is received, the global manager in-

160 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

vokes the specified in the configuration VM placement algorithm and passes as argu-

ments the list of VMs received from the local manager to be placed on other hosts along

with other system information. If some of the VMs are placed on hosts that are currently

in the sleep mode, the global manager reactivates them using the Wake-on-LAN technol-

ogy, as described in Section 6.3.4. Then, similarly to handling underload requests, the

global manager submits VM live migration requests to the OpenStack Nova API.

REST API

The global manager exposes a REST web service (REST API) for processing VM migration

requests sent by local managers. The service Uniform Resource Locator (URL) is defined

according to configuration options specified in /etc/neat/neat.conf, which is discussed in

detail in Section 6.3.8. The two relevant options are:

• global manager host – the name of the host running the global manager;

• global manager port – the port that should be used by the web service to receive

requests.

Using these configuration options, the service URL is composed according to the fol-

lowing template: http://global manager host:global manager port/. The global manager pro-

cesses two types of requests from local managers: host underloads, and host overloads

discussed in the previous section. Both types of requests are served at a single resource

’/’ accessed using the PUT method of the Hypertext Transfer Protocol (HTTP). The type

of a received request is determined by the global manager by analyzing the parameters

included in the request. The following parameters are common to both types of requests:

• username – the admin user name specified in the configuration file, which is used

to authenticate the client making the request as being allowed to access the web

service. This parameter is sent SHA-1-encrypted to avoid sending the user name

in the open form over the network.

• password – the admin password specified in the configuration file, which is used

to authenticate the client making the request as being allowed to access the web

service. Similarly to username, this parameter is also sent encrypted with the SHA-

1 algorithm.

• time – the time when the request has been sent. This parameter is used by the

6.3 System Design 161

global manager to identify and enforce time-outs, which may happen if a request

has been sent a long time ago rendering it non-representative of the current state

of the system.

• host – the host name of the overloaded or underloaded host, where the local man-

ager sending the request is deployed on.

• reason – an integer specifying the type of the request, where 0 represents a host

underload request, and 1 represents a host overload request.

If the request type specified by the reason parameter is 1 (i.e., denoting an overload

request), there is an extra mandatory parameter vm uuids. This is a string parameter,

which must contain a coma-separated list of Universally Unique Identifiers (UUIDs) of

VMs selected for migration from the overloaded host.

If a request contains all the required parameters and the provided credentials are cor-

rect, the service responds with the HTTP status code 200 OK. The service uses standard

HTTP error codes to respond in cases of errors. The following error codes are used:

• 400 – bad input parameter: incorrect or missing parameters;

• 401 – unauthorized: user credentials are missing;

• 403 – forbidden: user credentials do not much the ones specified in the configura-

tion file;

• 405 – method not allowed: the request has been made with a method other than

the only supported PUT method;

• 422 – precondition failed: the request has been sent more than 5 seconds ago, which

means that the states of the hosts or VMs may have changed – a retry is required.

Switching Power States of Hosts

One of the main features required to be supported by the hardware and OS in order to

take advantage of dynamic VM consolidation to save energy is the Advanced Config-

uration and Power Interface (ACPI). The ACPI standard defines platform-independent

interfaces for power management by the OS. The standard is supported by Linux, the tar-

get OS for the OpenStack platform. ACPI defines several sets of power states, the most

relevant of which is the sleep state S3, referred to as Suspend to RAM. Meisner et al. [81]

showed that power consumption of a typical blade server can be reduced from 450 W in

162 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

the active state to just 10.4 W in the S3 state. The transition latency is currently mostly

constrained by the Power Supply Unit (PSU) of the server, which leads to the total la-

tency of approximately 300 ms. This latency is acceptable for the purposes of dynamic

VM consolidation, as VM live migrations usually take tens of seconds.

The Linux OS provides an API to programmatically switch the physical machine into

the sleep mode. In particular, CentOS supports a pm-utils package, which includes com-

mand line programs for changing the power state of the machine. First of all, to check

whether the Suspend to RAM state is supported, the following command can be used:

pm-is-supported --suspend. If the command returns 0, the Suspend to RAM state

is supported, otherwise it is not supported. If the state is supported, the following com-

mand can be used to enable it: pm-suspend.

It is possible to reactivate a physical machine over the network using the Wake-on-

LAN technology. This technology has been introduced in 1997 by the Advanced Man-

ageability Alliance (AMA) formed by Intel and IBM, and is currently supported by most

modern servers. To reactivate a server using Wake-on-LAN, it is necessary to send over

the network a special packet, called the magic packet. This can be done using the ether-

wake Linux program as follows: ether-wake -i interface mac address, where

interface is replaced with the name of the network interface to send the packet from,

and mac address is replaced with the actual Media Access Control (MAC) address of

the host to be reactivated.

6.3.5 The Local Manager

The local manager component is deployed on every compute host as an OS service run-

ning in the background. The service periodically executes a function that determines

whether it is necessary to reallocate VMs from the host. A high-level view of the work-

flow performed by the local manager is shown in Figure 6.5. At the beginning of each

iteration it reads from the local storage the historical data on the resource usage by the

VMs and hypervisor stored by the data collector. Then, the local manager invokes the

specified in the configuration underload detection algorithm to determine whether the

host is underloaded. If the host is underloaded, the local manager sends an underload

request to the global manager’s REST API to migrate all the VMs from the host and switch

6.3 System Design 163

Figure 6.5: The local manager: an activity diagram

the host to a low-power mode.

If the host is not underloaded, the local manager proceeds to invoking the specified

in the configuration overload detection algorithm. If the host is overloaded, the local

manager invokes the configured VM selection algorithm to select VMs to offload from

the host. Once the VMs to migrate from the host are selected, the local manager sends an

overload request to the global manager’s REST API to migrate the selected VMs. Simi-

larly to the global manager, the local manager can be configured to use custom underload

detection, overload detection, and VM selection algorithms using the configuration file

discussed in Section 6.3.8.

6.3.6 The Data Collector

The data collector is deployed on every compute host as an OS service running in the

background. The service periodically collects the CPU utilization data for each VM run-

ning on the host, as well as data on the CPU utilization by the hypervisor. The col-

164 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

lected data are stored in the local file-based data store, and also submitted to the central

database. The data are stored as the average number of MHz consumed by a VM during

the last measurement interval of length τ. In particular, the CPU usage Cv
i (t0, t1) of a VM

i, which is a function of the bounds of a measurement interval [t0, t1], is calculated as

shown in (6.1).

Cv
i (t0, t1) =

nv
i F(τv

i (t1)− τv
i (t0))

t1 − t0
, (6.1)

where nv
i is the number of virtual CPU cores allocated to the VM i; F is the frequency of a

single CPU core in MHz; and τv
i (t) is the CPU time consumed by the VM i up to the time

t. The CPU usage of the hypervisor Ch
j (t0, t1) is calculated as a difference between the

overall CPU usage and the CPU usage by the set of VMs allocated to the host, as shown

in (6.2).

Ch
j (t0, t1) =

nh
j F(τh

j (t1)− τh
j (t0))

t1 − t0
− ∑

i∈Vj

Cv
i (t0, t1), (6.2)

where nh
j is the number of physical cores of the host j; τh

j (t) is the CPU time consumed

by the host overall up to the time t; and Vj is the set of VM allocated to the host j. The

CPU usage data are stored as integers. This data format is portable: the stored values can

be approximately converted to the CPU utilization percentages for any host or VM type,

supporting heterogeneous hosts and VMs.

The actual data are obtained using libvirt’s API6 in the form of the CPU time con-

sumed by VMs and hosts overall to date. Using the CPU time collected at the previous

time step, the CPU time for the last time interval is calculated. According to the CPU

frequency of the host and the length of the time interval, the CPU time is converted into

the required average MHz consumed by the VM over the last time interval. Then, using

the VMs’ CPU utilization data, the CPU utilization by the hypervisor is calculated. The

collected data are stored both locally and submitted to the central database. The number

of the latest data values to be stored locally and passed to the underload / overload de-

tection and VM selection algorithms is defined by the data collector data length option in

the configuration file.

6The libvirt virtualization API. http://libvirt.org/

http://libvirt.org/

6.3 System Design 165

At the beginning of every iteration, the data collector obtains the set of VMs currently

running on the host using the Nova API and compares them to the VMs running on the

host at the previous time step. If new VMs have been found, the data collector fetches

the historical data about them from the central database and stores the data in the local

file-based data store. If some VMs have been removed, the data collector removes the

data about these VMs from the local data store.

While OpenStack Neat oversubscribes the CPU of hosts by taking advantage of infor-

mation on the real-time CPU utilization, it does not overcommit RAM. In other words,

RAM is still a constraint in placing VMs on hosts; however, the constraint is the maxi-

mum amount of RAM that can be used by a VM statically defined by its instance type,

rather than the real-time RAM consumption. One of the reasons for that is that RAM

is a more critical resource compared with the CPU, as an application may fail due to

insufficient RAM, whereas insufficient CPU may just slow down the execution of the ap-

plication. Another reason is that in contrast to the CPU, RAM usually does not become

a bottleneck resource, as shown by an analysis of workload traces and information from

the industry [4, 107].

6.3.7 Data Stores

As shown in Figure 6.2, the system contains two types of data stores:

• Central database – a database server, which can be deployed either on the controller

host, or on one or more dedicated hosts.

• Local file-based data storage – a data store deployed on every compute host and used

for temporary caching the resource usage data to use by the local managers in order

to avoid excessive database queries.

The details about the data stores are given in the following subsections.

Central Database

The central database is used for storing historical data on the resource usage by VMs and

hypervisors, as well as hardware characteristics of hosts. The database is populated by

the data collectors deployed on compute hosts. There are two main use cases when the

166 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

data are retrieved from the central database instead of the local storage of compute hosts.

First, it is used by local managers to fetch the resource usage data after VM migrations.

Once a VM migration is completed, the data collector deployed on the destination host

fetches the required historical data from the database and stores them locally to use by

the local manager.

The second use case of the central database is when the global manager computes

a new placement of VMs on hosts. VM placement algorithms require information on

the resource consumption of all the hosts in order to make global allocation decisions.

Therefore, every time there is a need to place VMs on hosts, the global manager queries

the database to obtain the up-to-date data on the resource usage by hypervisors and VMs.

Field Type

id Integer
hostname String(255)
cpu mhz Integer
cpu cores Integer
ram Integer

(a) The hosts table

Field Type

id Integer
host id Integer
timestamp DateTime
cpu mhz Integer

(b) The host resource usage table

Field Type

id Integer
uuid String(36)

(c) The vms table

Field Type

id Integer
vm id Integer
timestamp DateTime
cpu mhz Integer

(d) The vm resource usage table

Table 6.1: The database schema

As shown in Table 6.1, the database schema contains 4 main tables: hosts, host resource

usage, vms, and vm resource usage. The hosts table stores information about hosts, such as

the host names, CPU frequency of a physical core in MHz, number of CPU cores, and

amount of RAM in MB. The vms table stores the UUIDs of VMs assigned by OpenStack.

The host resource usage and vm resource usage tables store data on the resource consump-

tion over time by hosts and VMs respectively.

Local File-Based Data Store

A local manager at each iteration requires data on the resource usage by the VMs and

hypervisor of the corresponding host in order to pass them to the underload / overload

6.3 System Design 167

detection and VM placement algorithms. To reduce the number of queries to the database

over the network, apart from submitting the data into the database, the data collector

temporarily stores the data locally. This way, the local manager can just read the data

from the local file storage and avoid having to retrieve data from the central database.

The data collector stores the resource usage data locally in local data directory/vms/ as

plain text files, where local data directory is defined in the configuration file discussed

in Section 6.3.8. The data for each VM are stored in a separate file named after the

UUID of the VM. The data on the resource usage by the hypervisor are stored in the

local data directory/host file. The format of the files is a new line separated list of integers

representing the average CPU consumption in MHz during measurement intervals.

6.3.8 Configuration

The configuration of OpenStack Neat is stored in the /etc/neat/neat.conf file in the standard

INI format using the ’#’ character for denoting comments. It is assumed that this file

exists on all the compute and controller hosts and contains the same configuration. The

available configuration options, default values, and descriptions of the options are given

in Table 6.2.

One of the ideas implemented in OpenStack Neat is providing the user with the abil-

ity to change the implementation and parameters of any of the 4 VM consolidation al-

gorithms simply by modifying the configuration file. This provides the means of adding

to the system and enabling custom VM consolidation algorithms without modifying the

source code of the framework. The algorithms are configured using the options with

the algorithm prefix. More information on adding and enabling VM consolidation algo-

rithms is given in Section 6.3.9.

Table 6.2: OpenStack Neat’s configuration options

Configuration option = default value Description

log directory=/var/log/neat The directory to store log files.

log level=3 The level of emitted log messages (0-3).

sql connection=
mysql://neat:neatpassword@controller/neat The host name and credentials for connecting to the

database server specified in the format supported by
SQLAlchemy.

168 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Table 6.2: OpenStack Neat’s configuration options (continued)

Configuration option = default value Description

os admin tenant name=admin The admin tenant name authenticating in Nova.

os admin user=admin The admin user name for authenticating in Nova.

os admin password=adminpassword The admin password for authenticating in Nova.

os auth url=http://controller:5000/v2.0/ The OpenStack authentication URL.

vm instance directory=/var/lib/nova/instances The directory, where OpenStack Nova stores the data
of VM instances.

compute hosts=compute1, compute2, . . . A coma-separated list of compute host names.

global manager host=controller The global manager’s host name.

global manager port=60080 The port of the REST web service exposed by the
global manager.

db cleaner interval=7200 The time interval between subsequent invocations of
the database cleaner in seconds.

local data directory=/var/lib/neat The directory used by the data collector to store data
on the resource usage by the VMs and hypervisor.

local manager interval=300 The time interval between subsequent invocations of
the local manager in seconds.

data collector interval=300 The time interval between subsequent invocations of
the data collector in seconds.

data collector data length=100 The number of the latest data values stored locally
by the data collector and passed to the underload /
overload detection, and VM placement algorithms.

host cpu overload threshold=0.8 The threshold on the overall (all cores) utilization of
the physical CPU of a host, above which the host is
considered to be overloaded. This is used for logging
host overloads.

host cpu usable by vms=1.0 The threshold on the overall (all cores) utilization of
the physical CPU of a host available for allocation to
VMs.

compute user=neat The user name for connecting to the compute hosts
for switching them into the sleep mode.

compute password=neatpassword The password of the user account used for connect-
ing to the compute hosts for switching them into the
sleep mode.

sleep command=pm-suspend A shell command used to switch a host into the sleep
mode, the compute user must have permissions to ex-
ecute this command.

ether wake interface=eth0 The network interface to send a magic packet from
the controller host using the ether-wake program.

network migration bandwidth=10 The network bandwidth in MB/s available for VM
live migrations.

algorithm underload detection factory=
neat.locals.underload.trivial.
last n average threshold factory

The fully qualified name of a Python factory function
that returns a function implementing an underload
detection algorithm.

algorithm underload detection parameters=
{“threshold”: 0.5, “n”: 2}

JSON encoded parameters to be parsed and passed
to the underload detection algorithm factory.

algorithm overload detection factory=
neat.locals.overload.mhod.core.mhod factory

The fully qualified name of a Python factory func-
tion that returns a function implementing an over-
load detection algorithm.

6.3 System Design 169

Table 6.2: OpenStack Neat’s configuration options (continued)

Configuration option = default value Description

algorithm overload detection parameters=
{“state config”: [0.8], “otf”: 0.2, “history size”:
500, “window sizes”: [30, 40, 50, 60, 70, 80, 90,
100], “bruteforce step”: 0.2, “learning steps”: 10}

JSON encoded parameters to be parsed and passed
to the specified overload detection algorithm factory.

algorithm vm selection factory=
neat.locals.vm selection.algorithms. mini-
mum migration time max cpu factory

The fully qualified name of a Python factory function
that returns a function implementing a VM selection
algorithm.

algorithm vm selection parameters= {“n”: 2} JSON encoded parameters to be parsed and passed
to the specified VM selection algorithm factory.

algorithm vm placement factory=
neat.globals.vm placement.
bin packing.best fit decreasing factory

The fully qualified name of a Python factory function
that returns a function implementing a VM place-
ment algorithm.

algorithm vm placement parameters=
{“cpu threshold”: 0.8, “ram threshold”: 0.95,
“last n vm cpu”: 2}

JSON encoded parameters to be parsed and passed
to the specified VM placement algorithm factory.

6.3.9 Extensibility of the Framework

One of the main points of the framework’s extensibility is the ability to add new VM

consolidation algorithm to the system and enable them by updating the configuration

file without the necessity in modifying the source code of the framework itself. There are

4 algorithms that can be changed through a modification of the configuration file: un-

derload / overload detection, VM selection, and VM placement algorithms. The values

of the corresponding configuration options should be fully qualified names of functions

available as a part of one of the installed Python libraries. The fact that the functions are

specified by their fully qualified names also means that they can be installed as a part of

a Python library independent from OpenStack Neat. The 4 corresponding configuration

options are the following:

1. algorithm underload detection factory

2. algorithm overload detection factory

3. algorithm vm selection factory

4. algorithm vm placement factory

Since an algorithm may need to be initialized prior to its usage, the factory func-

tion pattern is applied. The functions specified as values of any of the algorithm * factory

configuration options are not functions that actually implement VM consolidation algo-

170 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Table 6.3: Interfaces of VM consolidation algorithms and their factory functions

Algorithm Factory arguments Algorithm arguments Algorithm return

Underload 1. time step: int, ≥ 0 1. cpu utilization: list(float) 1. decision: bool
detection 2. migration time: float, ≥ 0 2. state: dict(str: *) 2. state: dict(str: *)

3. params: dict(str: *)

Overload 1. time step: int, ≥ 0 1. cpu utilization: list(float) 1. decision: bool
detection 2. migration time: float, ≥ 0 2. state: dict(str: *) 2. state: dict(str: *)

3. params: dict(str: *)

VM 1. time step: int, ≥ 0 1. vms cpu: dict(str : list(int)) 1. vms: list(str)
selection 2. migration time: float, ≥ 0 2. vms ram: dict(str : list(int)) 2. state: dict(str: *)

3. params: dict(str: *) 3. state: dict(str: *)

VM 1. time step: int, ≥ 0 1. hosts cpu usage: dict(str : int) 1. alloc.: dict(str: str)
placement 2. migration time: float, ≥ 0 2. hosts cpu total: dict(str : int) 2. state: dict(str: *)

3. params: dict(str: *) 3. hosts ram usage: dict(str : int)
4. hosts ram total: dict(str : int)
5. inactive hosts cpu: dict(str : int)
6. inactive hosts ram: dict(str : int)
7. vms cpu: dict(str : list(int))
8. vms ram: dict(str : list(int))
9. state: dict(str: *)

rithms, rather they are functions that return initialized instances of functions implement-

ing the corresponding VM consolidation algorithms. All functions implementing VM

consolidation algorithms and their factories should adhere to the corresponding prede-

fined interfaces. For example, all factory functions of overload detection algorithms must

accept a time step, migration time, and algorithm parameters as arguments. The func-

tion must return another function that implements the required consolidation algorithm,

which in turn must follow the interface predefined for overload detection algorithms.

Every function implementing an overload detection algorithm must: (1) accept as ar-

guments a list of CPU utilization percentages and dictionary representing the state of the

algorithm; and (2) return a tuple containing the decision of the algorithm as a boolean

and updated state dictionary. If the algorithm is stateless, it should return an empty dic-

tionary as the state. Definitions of the interfaces of functions implementing VM consol-

idation algorithms and their factories are given in Table 6.3. The types and descriptions

of the arguments are given in Table 6.4.

Using the algorithm * parameters configuration options, it is possible to pass arbitrary

dictionaries of parameters to VM consolidation algorithm factory functions. The parame-

ters must be specified as an object in the JSON format on a single line. The specified JSON

strings are automatically parsed by the system and passed to factory functions as Python

6.3 System Design 171

dictionaries. Apart from being parameterized, a consolidation algorithm may also pre-

serve state across invocations. This can be useful for implementing stateful algorithms,

or as a performance optimization measure, e.g., to avoid repeating costly computations.

Preserving state is done by accepting a state dictionary as an argument, and returning

the updated dictionary as the second element of the return tuple.

Table 6.4: Arguments of VM consolidation algorithms and their factory functions

Argument name Type Description

time step int, ≥ 0 The length of the time step in seconds.

migration time float, ≥ 0 The VM migration time in time seconds.

params dict(str: *) A dictionary containing the algorithm’s parameters
parsed from the JSON representation specified in the con-
figuration file.

cpu utilization list(float) A list of the latest CPU utilization percentages in the [0, 1]
range calculated from the combined CPU usage by all the
VMs allocated to the host and the hypervisor.

state dict(str: *) A dictionary containing the state of the algorithm passed
over from the previous iteration.

vms cpu dict(str : list(int)) A dictionary of VM UUIDs mapped on the lists of the lat-
est CPU usage values by the VMs in MHz.

vms ram dict(str : int) A dictionary of VM UUIDs mapped on the maximum al-
lowed amounts of RAM for the VMs in MB.

host cpu usage dict(str : int) A dictionary of host names mapped on the current com-
bined CPU usage in MHz.

host cpu total dict(str : int) A dictionary of host names mapped on the total CPU ca-
pacities in MHz calculated as a multiplication of the fre-
quency of a single physical core by the number of cores.

host ram usage dict(str : int) A dictionary of host names mapped on the current
amounts of RAM in MB allocated to the VMs of the hosts.

host ram total dict(str : int) A dictionary of host names mapped on the total amounts
of RAM in MB available to VMs on the hosts.

inactive hosts cpu dict(str : int) A dictionary of the names of the currently inactive hosts
mapped on the total CPU capacities in MHz.

inactive hosts ram dict(str : int) A dictionary of the names of the currently inactive hosts
mapped on the total amounts of RAM in MB available to
VMs on the hosts.

Currently, the data collector only collects data on the CPU utilization. It is possi-

ble to extend the system to collect other types of data that may be passed to the VM

consolidation algorithms. To add another type of data, it is necessary to extend the

host resource usage and vm resource usage database tables by adding new fields for storing

the new types of data. Then, the execute function of the data collector should be extended

to include the code required to obtain the new data and submit them to the database.

172 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Finally, the local and global managers need to be extended to fetch the new type of data

from the database to be passed to the appropriate VM consolidation algorithms.

6.3.10 Deployment

OpenStack Neat needs to be deployed on all the compute and controller hosts. The

deployment consists in installing dependencies, cloning the project’s Git repository, in-

stalling the project, and starting up the services. The process is cumbersome since mul-

tiple steps should be performed on each host. The OpenStack Neat distribution includes

a number of Shell scripts that simplify the deployment process. The following steps are

required to perform a complete deployment of OpenStack Neat:

1. Clone the project’s repository on the controller host by executing:

git clone git://github.com/beloglazov/openstack-neat.git

2. Install the required dependencies by executing the following command from the

cloned repository if the OS of the controller is CentOS: ./setup/deps-centos.sh

3. In the cloned repository, modify neat.conf to meet the requirements. In particular, it

is necessary to enter the names of the available compute hosts. It is also necessary

to create a database on the database server accessible with the details specified in

the configuration file.

4. Install OpenStack Neat on the controller host by executing the following com-

mand from the project’s directory: sudo python setup.py install. This

command will also copy the modified configuration file to /etc/neat/neat.conf.

5. Using the scripts provided in the package, it is possible to install OpenStack Neat

on all the compute hosts specified in the configuration file remotely from the con-

troller. First, the following command can be used to clone the repository on all the

compute hosts: ./compute-clone-neat.py.

6. Once the repository is cloned, OpenStack Neat and its dependencies can be in-

stalled on all the compute hosts by executing the two following commands on the

controller: ./compute-install-deps.py; ./compute-install-neat.py

7. Next, it is necessary to copy the modified configuration file to the compute hosts,

which can be done by the following command: ./compute-copy-conf.py

8. All OpenStack Neat services can be started on the controller and compute hosts

6.4 VM Consolidation Algorithms 173

with the following single command ./all-start.sh

Once all the steps listed above are completed, OpenStack Neat’s services should be

deployed and started up. If any service fails, the log files can be found in /var/log/neat/ on

the corresponding host.

6.4 VM Consolidation Algorithms

As mentioned earlier, OpenStack Neat is based on the approach to the problem of dy-

namic VM consolidation, proposed in the previous chapters, which consists in dividing

the problem into 4 sub-problems: (1) host underload detection; (2) host overload detec-

tion; (3) VM selection; and (4) VM placement. This section discusses some of the im-

plemented algorithms. It is important to note that the presented algorithms are not the

main focus of the current chapter. The focus of the chapter is the design of the framework

for dynamic VM consolidation, which is capable of handling multiple implementations

of consolidation algorithms, and can be switched between the implementations through

configuration as discussed in Section 6.3.8.

6.4.1 Host Underload Detection

In the experiments of this chapter, a simple heuristic is used for the problem of underload

detection shown in Algorithm 7. The algorithm calculates the mean of the n latest CPU

utilization measurements and compares it to the specified threshold. If the mean CPU

utilization is lower than the threshold, the algorithm detects a host underload situation.

The algorithm accepts 3 arguments: the CPU utilization threshold, the number of last

CPU utilization values to average, and a list of CPU utilization measurements.

Algorithm 7 The averaging threshold-based underload detection algorithm

Input: threshold, n, utilization
Output: Whether the host is underloaded

1: if utilization is not empty then
2: utilization← last n values of utilization
3: meanUtilization← sum(utilization) / len(utilization)
4: return meanUtilization ≤ threshold
5: return false

174 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

6.4.2 Host Overload Detection

OpenStack Neat includes several overload detection algorithms, which can be enabled

by modifying the configuration file. One of the simple included algorithms is the aver-

aging Threshold-based (THR) overload detection algorithm. The algorithm is similar to

Algorithm 7, while the only difference is that it detects overload situations if the mean of

the n last CPU utilization measurements is higher than the specified threshold.

Another overload detection algorithm included in the default implementation of Open-

Stack Neat is based on estimating the future CPU utilization using local regression (i.e., the

Loess method), referred to as the Local Regression Robust (LRR) algorithm shown in Al-

gorithm 8, which has been introduced in Chapter 4. The algorithm calculates the Loess

parameter estimates, and uses them to predict the future CPU utilization at the next time

step taking into account the VM migration time. In addition, the LR algorithm accepts

a safety parameter, which is used to scale the predicted CPU utilization to increase or

decrease the sensitivity of the algorithm to potential overloads.

Algorithm 8 The Local Regression Robust (LRR) overload detection algorithm

Input: threshold, param, n, migrationTime, utilization
Output: Whether the host is overloaded

1: if len(utilization) < n then
2: return false
3: estimates← loessRobustParameterEstimates(last n values of utilization)
4: prediction← estimates[0] + estimates[1] × (n + migrationTime)
5: return param × prediction ≥ threshold

A more complex overload detection algorithm included in OpenStack Neat is the

Markov Overload Detection (MHOD) algorithm introduced in Chapter 5. This algorithm

allows the system administrator to specify a constraint on the OTF metric. Let a host can

be in one of two states in regard to its CPU utilization: (1) serving regular load; and (2)

being overloaded. It is assumed that if a host is overloaded, the VMs allocated to that

host are not being provided with the required performance level, and therefore, expe-

rience performance degradation. The OTF metric allows quantifying the performance

degradation over a period of time according to the definition of the overload state. The

OTF metric is defined as shown in (6.3).

6.4 VM Consolidation Algorithms 175

OTF(ut) =
to(ut)

ta
, (6.3)

where ut is the CPU utilization threshold distinguishing the non-overload and overload

states of a compute host; to is the time, during which the host has been overloaded, which

is a function of ut; and ta is the total time, during which the host has been active. It

has been claimed in the literature that the performance of servers degrade when their

utilization approaches 100% [108, 133]. This problem is addressed in the OTF metric by

adjusting the value of ut, which in the experiments was set to 80%. Using this definition,

the QoS requirements can be defined as the maximum allowed value of OTF. For instance,

assume that OTF must be less or equal to 10%, and a host becomes overloaded when

its CPU utilization is higher than 80%. This would mean that on average every host is

allowed to have the CPU utilization higher than 80% for no longer than 10% of its total

activity time. The date center-level OTF can be calculated by replacing the time values

for a single host by the aggregated time values over the full set of hosts, as discussed in

Section 6.6.2.

The MHOD algorithm enables the system administrator to explicitly specify a con-

straint on the OTF value as a parameter of the algorithm, while maximizing the time

between VM migrations, thus, improving the quality of VM consolidation. The algo-

rithm builds a Markov chain model based on the observed history of the CPU utilization

applying the Multisize Sliding Window workload estimation method [80]. The model is

used to generate the objective function and constraint of the optimization problem to find

the VM migration probability. The optimization problem is attempted to be solved using

the brute-force search method with a large step to find any feasible solution. If no feasible

solution exists or the VM migration probability is less than 1, the algorithm detects a host

overload. The algorithm is described in detail in Chapter 5.

6.4.3 VM Selection

Once a host overload has been detected, it is necessary to determine what VMs are the

best to be migrated from the host. This problem is solved by VM selection algorithms.

An example of such an algorithm is simply randomly selecting a VM from the set of

176 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

VMs allocated to the host. Another algorithm shown in Algorithm 9 is called Minimum

Migration Time Maximum CPU utilization (MMTMC). This algorithm first selects VMs

with the minimum amount of RAM to minimize the live migration time. Then, out of the

selected subset of VMs, the algorithm selects the VM with the maximum CPU utilization

averaged over the last n measurements to maximally reduce the overall CPU utilization

of the host.

Algorithm 9 The MMTMC algorithm

Input: n, vmsCpuMap, vmsRamMap
Output: A VM to migrate

1: minRam←min(values of vmsRamMap)
2: maxCpu← 0
3: selectedVm← None
4: for vm, cpu in vmsCpuMap do
5: if vmsRamMap[vm] > minRam then
6: continue
7: vals← last n values of cpu
8: mean← sum(vals) / len(vals)
9: if maxCpu < mean then

10: maxCpu← mean
11: selectedVm← vm
12: return selectedVm

6.4.4 VM Placement

The VM placement problem can be seen as a bin packing problem with variable bin sizes,

where bins represent hosts; bin sizes are the available CPU capacities of hosts; and items

are VMs to be allocated with an extra constraint on the amount of RAM. As the bin

packing problem is NP-hard, it is appropriate to apply a heuristic to solve it. OpenStack

Neat implements a modification of the Best Fit Decreasing (BFD) algorithm, which has

been shown to use no more than 11/9 ·OPT + 1 bins, where OPT is the number of bins

of the optimal solution [130].

The implemented modification of the BFD algorithm shown in Algorithm 10 includes

several extensions: the ability to handle extra constraints, namely, consideration of cur-

rently inactive hosts, and a constraint on the amount of RAM required by the VMs. An

inactive host is only activated when a VM cannot be placed on one of the already active

hosts. The constraint on the amount of RAM is taken into account in the first fit manner,

6.4 VM Consolidation Algorithms 177

Algorithm 10 The Best Fit Decreasing (BFD) VM placement algorithm

Input: n, hostsCpu, hostsRam, inactiveHostsCpu, inactiveHostsRam, vmsCpu, vmsRam
Output: A map of VM UUIDs to host names

1: vmTuples← empty list
2: for vm, cpu in vmsCpu do
3: vals← last n values of cpu
4: append a tuple of the mean of vals, vmsRam[vm], and vm to vmTuples
5: vms← sortDecreasing(vmTuples)
6: hostTuples← empty list
7: for host, cpu in hostsCpu do
8: append a tuple of cpu, hostsRam[host], host to hostTuples
9: hosts← sortIncreasing(hostTuples)

10: inactiveHostTuples← empty list
11: for host, cpu in inactiveHostsCpu do
12: append a tuple of cpu, inactiveHostsRam[host], host to inactiveHostTuples
13: inactiveHosts← sortIncreasing(inactiveHostTuples)
14: mapping← empty map
15: for vmCpu, vmRam, vmUuid in vms do
16: mapped← false
17: while not mapped do
18: allocated← false
19: for , , host in hosts do
20: if hostsCpu[host] ≥ vmCpu and hostsRam[host] ≥ vmRam then
21: mapping[vmUuid]← host
22: hostsCpu[host]← hostsCpu[host] - vmCpu
23: hostsRam[host]← hostsRam[host] - vmRam
24: mapped← true
25: allocated← true
26: break
27: if not allocated then
28: if inactiveHosts is not empty then
29: activatedHost← pop the first from inactiveHosts
30: append activatedHost to hosts
31: hosts← sortIncreasing(hosts)
32: hostsCpu[activatedHost[2]]← activatedHost[0]
33: hostsRam[activatedHost[2]]← activatedHost[1]
34: else
35: break
36: if len(vms) == len(mapping) then
37: return mapping
38: return empty map

178 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

i.e., if a host is selected for a VM as a best fit according to its CPU requirements, the host

is confirmed if it just satisfies the RAM requirements. In addition, similarly to the aver-

aging underload and overload detection algorithms, the algorithm uses the mean values

of the last n CPU utilization measurements as the CPU constraints. The worst-case com-

plexity of the algorithm is (n + m/2)m, where n is the number of physical nodes, and m

is the number of VMs to be placed. The worst case occurs when every VM to be placed

requires a new inactive host to be activated.

6.5 Implementation

OpenStack Neat is implemented in Python. The choice of the programming language

has been mostly determined by the fact that OpenStack itself is implemented in Python;

therefore, using the same programming language could potentially simplify the integra-

tion of the two projects. Since Python is a dynamic language, it has a number of ad-

vantages, such as concise code, no type constraints, and monkey patching, which refers to

the ability to replace methods, attributes, and functions at run-time. Due to its flexibility

and expressiveness, Python typically helps to improve productivity and reduce the de-

velopment time compared with statically typed languages, such as Java and C++. The

downsides of dynamic typing are the lower run-time performance and lack of compile

time guarantees provided by statically typed languages.

To compensate for the reduced safety due to the lack of compile time checks, several

programming techniques are applied in the implementation of OpenStack Neat to min-

imize bugs and simplify maintenance. First of all, the functional programming style is

followed by leveraging the functional features of Python, such as higher-order functions

and closures, and minimizing the use of the object-oriented programming features, such

as class hierarchies and encapsulation. One important technique that is applied in the

implementation of OpenStack Neat is the minimization of mutable state. Mutable state is

one of the causes of side effects, which prevent functions from being referentially trans-

parent. This means that if a function relies on some global mutable state, multiple calls

to that function with the same arguments do not guarantee the same result returned by

the function for each call.

6.5 Implementation 179

The implementation of OpenStack Neat tries to minimize side effects by avoiding

mutable state where possible, and isolating calls to external APIs in separate functions

covered by unit tests. In addition, the implementation splits the code into small easy to

understand functions with explicit arguments that the function acts upon without mu-

tating their values. To impose constraints on function arguments, the Design by Contract

(DbC) approach is applied using the PyContracts library. The approach prescribes the

definition of formal, precise, and verifiable interface specifications for software compo-

nents. PyContracts lets the programmer to specify contracts on function arguments via

a special format of Python docstrings. The contracts are checked at run-time, and if any

of the constraints is not satisfied, an exception is raised. This approach helps to localize

errors and fail fast, instead of hiding potential errors. Another advantage of DbC is com-

prehensive and up-to-date code documentation, which can be generated from the source

code by automated tools.

To provide stronger guarantees of the correctness of the program, it is important to

apply unit testing. According to this method, each individual unit of source code, which

in this context is a function, should be tested by an automated procedure. The goal of

unit testing is to isolate parts of the program and show that they perform correctly. One

of the most efficient unit testing techniques is implemented by the Haskell QuickCheck

library. This library allows the definition of tests in the form of properties that must

be satisfied, which do not require the manual specification of the test case input data.

QuickCheck takes advantage of Haskell’s rich type system to infer the required input

data and generates multiple test cases automatically.

The implementation of OpenStack neat uses Pyqcy, a QuickCheck-like unit testing

framework for Python. This library allows the specification of generators, which can be

seen as templates for input data. Similarly to QuickCheck, Pyqcy uses the defined tem-

plates to automatically generate input data for hundreds of test cases for each unit test.

Another Python library used for testing of OpenStack Neat is Mocktest. This library

leverages the flexibility of Python’s monkey patching to dynamically replace, or mock,

existing methods, attributes, and functions at run-time. Mocking is essential for unit

testing the code that relies on calls to external APIs. In addition to the ability to set ar-

tificial return values of methods and functions, Mocktest allows setting expectations on

180 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Table 6.5: The OpenStack Neat codebase summary

Package Files Lines of code Lines of comments
Core 21 2,144 1,946
Tests 20 3,419 260

the number of the required function calls. If the expectations are not met, the test fails.

Currently, OpenStack Neat includes more than 150 unit tests.

OpenStack Neat applies Continuous Integration (CI) using the Travis CI service7. The

aim of the CI practice is to detect integration problems early by periodically building and

deploying the software system. Travis CI is attached to OpenStack Neat’s source code

repository through Git hooks. Every time modifications are pushed to the repository,

Travis CI fetches the source code and runs a clean installation in a sandbox followed by

the unit tests. If any step of the integration process fails, Travis CI reports the problem.

Despite all the precautions, run-time errors may occur in a deployed system. Open-

Stack Neat implements multi-level logging functionality to simplify the post-mortem

analysis and debugging process. The verbosity of logging can be adjusted by modifying

the configuration file. Table 6.5 provides information on the size of the current codebase

of OpenStack Neat. Table 6.6 summarizes the set of open source libraries used in the

implementation of OpenStack Neat.

6.6 A Benchmark Suite for Evaluating Distributed Dynamic VM
Consolidation Algorithms

Currently, research in the area of dynamic VM consolidation is limited by the lack of a

standardized suite of benchmark software, workload traces, performance metrics, and

evaluation methodology. Most of the time, researchers develop their own solutions for

evaluating the proposed algorithms, which are not publicly available later on. This com-

plicates further research efforts in the area due to the limited opportunities for comparing

new results with prior solutions. Moreover, the necessity of implementing custom eval-

uation software leads to duplication of efforts. This chapter outlines an initial version of

a benchmark suite for evaluating dynamic VM consolidation algorithms following the

7OpenStack Neat on Travis CI. http://travis-ci.org/beloglazov/openstack-neat

http://travis-ci.org/beloglazov/openstack-neat

6.6 A Benchmark Suite 181

Table 6.6: Open source libraries used by OpenStack Neat

Library License Description

Distribute Python 2.0 A library for managing Python projects and distributions.
http://bitbucket.org/tarek/distribute

Pyqcy FreeBSD A QuickCheck-like unit testing framework for Python.
http://github.com/Xion/pyqcy

Mocktest LGPL A Python library for mocking objects and functions.
http://github.com/gfxmonk/mocktest

PyContracts LGPL A Python library for Design by Contract (DbC).
http://github.com/AndreaCensi/contracts

SQLAlchemy MIT A Python SQL toolkit, also used by the core OpenStack services.
http://www.sqlalchemy.org/

Bottle MIT A micro web-framework for Python.
http://bottlepy.org/

Requests ISC A Python HTTP client library.
http://python-requests.org/

libvirt LGPL A virtualization toolkit with Python bindings.
http://libvirt.org/

Python-novaclient Apache 2.0 A Python Nova API client implementation.
http://github.com/openstack/python-novaclient

NumPy BSD A library for scientific computing.
http://numpy.scipy.org/

SciPy BSD A library of extra tools for scientific computing.
http://scipy.org/

distributed approach of splitting the problem into 4 sub-problems discussed earlier. The

proposed benchmark suite consists of 4 major components:

1. OpenStack Neat, a framework for distributed dynamic VM consolidation in Open-

Stack Clouds providing a base system implementation and allowing configuration-

based switching of different implementations of VM consolidation algorithms.

2. A set of workload traces containing data on the CPU utilization collected every 5

minutes from more than a thousand PlanetLab VMs deployed on servers located

in more than 500 places around the world [92].

3. A set of performance metrics capturing the following aspects: quality of VM con-

solidation; quality of service delivered by the system; overhead of VM consolida-

tion in terms of the number of VM migration; and execution time of the consoli-

dation algorithms.

4. Evaluation methodology prescribing the approach of preparing experiments, de-

ploying the system, generating workload using the PlanetLab traces, as well as

processing and analyzing the results.

http://bitbucket.org/tarek/distribute
http://github.com/Xion/pyqcy
http://github.com/gfxmonk/mocktest
http://github.com/AndreaCensi/contracts
http://www.sqlalchemy.org/
http://bottlepy.org/
http://python-requests.org/
http://libvirt.org/
http://github.com/openstack/python-novaclient
http://numpy.scipy.org/
http://scipy.org/

182 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

The availability of such a benchmark suite will foster and facilitate research efforts

and future advancements in the area of dynamic VM consolidation. In addition, re-

searchers are encouraged to publicize and share the implemented consolidation algo-

rithms to simplify performance comparisons with future solutions. One approach to

sharing algorithm implementations is the addition of an extra package to the main branch

of OpenStack Neat that will contain contributed algorithms. This would provide a cen-

tral location, where anyone can find the up-to-date set of consolidation algorithms to use

in their research. Therefore, processing and managing the inclusion of such submissions

into the main public repository of OpenStack Neat will be done as a part of the project.

The following sections provide more information on the workload traces, performance

metrics, and evaluation methodology of the proposed benchmark suite. The performance

evaluation discussed in Section 6.7 is an example of application of the benchmark suite.

6.6.1 Workload Traces

To make experiments reproducible, it is important to rely on a set of input traces to reli-

ably generate the workload, which would allow the experiments to be repeated as many

times as necessary. It is also important to use workload traces collected from a real sys-

tem rather than artificially generated, as this would help to reproduce a realistic scenario.

This chapter uses workload trace data provided as a part of the CoMon project, a mon-

itoring infrastructure of PlanetLab [92]. The traces include data on the CPU utilization

collected every 5 minutes from more than a thousand VMs deployed on servers located

in more 500 places around the world. 10 days of workload traces collected during March

and April 2011 have been randomly chosen, which resulted in the total of 11,746 24-hour

long traces. The full set of workload traces is publicly available online8.

The workload from PlanetLab VMs is representative of an IaaS Cloud environment,

such as Amazon EC2, in the sense that the VMs are created and managed by multiple

independent users, and the infrastructure provider is not aware of what particular ap-

plications are executing in the VMs. Furthermore, this implies that the overall system

workload is composed of multiple independent heterogeneous applications, which also

corresponds to an IaaS environment. However, there is difference from a public Cloud

8The PlanetLab traces. http://github.com/beloglazov/planetlab-workload-traces

http://github.com/beloglazov/planetlab-workload-traces

6.6 A Benchmark Suite 183

provider, such as Amazon EC2. The difference is that PlanetLab is an infrastructure

mainly used for research purposes; therefore, the applications are potentially closer to

the HPC type, rather than web services, which are common in public Clouds.

HPC applications are typically CPU-intensive with lower dynamics in the resource

utilization compared with web services, whose resource consumption depends on the

number of user requests and may vary over time. HPC workload is easier to handle

for a VM consolidation system due to infrequent variation in the resource utilization.

Therefore, to stress the system in the experiments, the original workload traces have been

filtered to leave only the ones that exhibit high variability. In particular, only the traces

that satisfy the following two conditions have been selected: (1) at least 10% of time the

CPU utilization is lower than 20%; and (2) at least 10% of time the CPU utilization is

higher than 80%. This significantly reduced the number of workload traces resulting in

only 33 out of 11,746 24-hour traces left. The set of selected traces and filtering script are

available online [14].

The resulting number of traces was sufficient for the experiments, whose scale was

limited by the size of the testbed described in Section 6.7.1. If a larger number of traces

is required to satisfy larger scale experiments, one approach is to relax the conditions of

filtering the original set of traces. Another approach is to randomly sample with replace-

ment from the limited set of traces. If another set of suitable workload traces becomes

publicly available, it can be included in the benchmark suite as an alternative.

6.6.2 Performance Metrics

For effective performance evaluation and comparison of algorithms it is essential to de-

fine performance metrics that capture the relevant characteristics of the algorithms. One

of the objectives of dynamic VM consolidation is the minimization of energy consump-

tion by the physical nodes, which can be a metric for performance evaluation and com-

parison. However, energy consumption is highly dependent on the particular model and

configuration of the underlying hardware, efficiency of power supplies, implementation

of the sleep mode, etc. A metric that abstracts from the mentioned factors, but is directly

proportional and can be used to estimate energy consumption, is the time of a host being

idle, aggregated over the full set of hosts. Using this metric, the quality of VM consoli-

184 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

dation can be represented by the increase in the aggregated idle time of hosts. However,

this metric depends on the length of the overall evaluation period and the number of

hosts. To eliminate this dependency, a normalized metric is proposed that is referred to

as the Aggregated Idle Time Fraction (AITF) defined as shown in (6.4).

AITF =
∑h∈H ti(h)
∑h∈H ta(h)

, (6.4)

where H is a set of hosts; ti(h) is the idle time of the host h; and ta(h) is the total activity

time of the host h. To quantify the overall QoS delivered by the system, the Aggregated

Overload Time Fraction (AOTF) metric is applied, which is based on (6.3) and defined as

in (6.5).

AOTF(ut) =
∑h∈H to(h, ut)

∑h∈H tb(h)
, (6.5)

where to(h, ut) is the overload time of the host h calculated according to the overload

threshold ut; and tb(h) is the total busy (non-idle) time of the host h. The overhead of

dynamic VM consolidation in the system is proposed to be evaluated in terms of the

number of VM migrations initiated as a part of dynamic consolidation. This metric is

referred to as the VM Migration Count (VMMC). Apart from that, the execution time of

various components of the system including the execution time of the VM consolidation

algorithms is evaluated.

6.6.3 Performance Evaluation Methodology

One of the key points of the proposed performance evaluation methodology is the min-

imization of manual steps required to run an experiment through automation. Automa-

tion begins from scripted installation of the OS, OpenStack services and their dependen-

cies on the testbed’s nodes, as described in the OpenStack installation guide [19]. The

next step is writing scripts for preparing the system for an experiment, which includes

starting up the required services, booting VM instances, and preparing them for starting

the workload generation.

While most of the mentioned steps are trivial, workload generation is complicated by

the requirement of synchronizing the time of starting the workload generation on all the

6.6 A Benchmark Suite 185

VMs. Another important aspect of workload generation is the way workload traces are

assigned to VMs. Typically, the desired behavior is assigning a unique workload trace out

of the full set of traces to each VM. Finally, it is necessary to create and maintain a specific

level of CPU utilization for the whole interval between changes of the CPU utilization

level defined by the workload trace for each VM.

This problem is addressed using a combination of a CPU load generation program9,

and a workload distribution web service and clients deployed on VMs [14]. When a VM

boots from a pre-configured image, it automatically starts a script that polls the central

workload distribution web service to be assigned a workload trace. Initially, the work-

load distribution web service drops requests from clients deployed on VMs to wait for

the moment when all the required VM instances are booted up and ready for generating

workload. When all clients are ready, the web service receives a command to start the

workload trace distribution. The web service starts replying to clients by sending each

of them a unique workload trace. Upon receiving a workload trace, every client initiates

the CPU load generator and passes the received workload trace as an argument. The

CPU load generator reads the provided workload trace file, and starts generating CPU

utilization levels corresponding to the values specified in the workload trace file for each

time frame.

During an experiment, OpenStack Neat continuously logs various events into both

the database and log files on each host. After the experiment, the logged data are used by

special result processing scripts to extract the required information and compute perfor-

mance metrics discussed in Section 6.6.2, as well as the execution time of various system

components. This process should be repeated for each combination of VM consolida-

tion algorithms under consideration. After the required set of experiments is completed,

other scripts are executed to perform automated statistical tests and plotting graphs for

comparing the algorithms.

The next section presents an example of application of the proposed benchmark suite,

and in particular applies: (1) OpenStack Neat as the dynamic VM consolidation frame-

work; (2) the filtered PlanetLab workload traces discussed in Section 6.6.1; (3) the per-

formance metrics defined in Section 6.6.2; and (4) the proposed evaluation methodology.

9The CPU load generator. http://github.com/beloglazov/cpu-load-generator

http://github.com/beloglazov/cpu-load-generator

186 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

The full set of scripts used in the experiments is available online [14].

6.7 Performance Evaluation

In this section, the benchmark suite proposed in Section 6.6 is applied to evaluate Open-

Stack Neat and several dynamic VM consolidation algorithm discussed in Section 6.4.

6.7.1 Experimental Testbed

The testbed used for performance evaluation of the system consisted of the following

hardware:

• 1 x Dell Optiplex 745

– Intel(R) Core(TM) 2 CPU (2 cores, 2 threads) 6600 @ 2.40GHz

– 2GB DDR2-667

– Seagate Barracuda 80GB, 7200 RPM SATA II (ST3808110AS)

– Broadcom 5751 NetXtreme Gigabit Controller

• 4 x IBM System x3200 M3

– Intel(R) Xeon(R) CPU (4 cores, 8 threads), X3460 @ 2.80GHz

– 4GB DDR3-1333

– Western Digital 250 GB, 7200 RPM SATA II (WD2502ABYS-23B7A)

– Dual Gigabit Ethernet (2 x Intel 82574L Ethernet Controller)

• 1 x Netgear ProSafe 16-Port 10/100 Desktop Switch FS116

The Dell Optiplex 745 machine was chosen to serve as the controller host running all

the major OpenStack services and the global manager of OpenStack Neat. The 4 IBM

System x3200 M3 servers were used as compute hosts, i.e. running OpenStack Nova, and

local managers and data collectors of OpenStack Neat. All the machines formed a local

network connected via the Netgear FS116 network switch.

Unfortunately, there was a hardware problem preventing the system from taking ad-

vantage of dynamic VM consolidation to save energy. The problem was that the com-

pute nodes of the testbed did not support the Suspend to RAM power state, which is

the most suitable for the purpose of dynamic VM consolidation. This state potentially

6.7 Performance Evaluation 187

provides very low switching latency, on the order of 300 ms, while reducing the energy

consumption to a negligible level [81]. Therefore, rather than measuring the actual en-

ergy consumption by the servers, the AITF metric introduced in Section 6.6.2 was applied

to evaluate the system, which can be seen as a representation of potential energy savings.

6.7.2 Experimental Setup and Algorithm Parameters

From the point of view of experimenting with close to real world conditions, it is inter-

esting to allocate as many VMs on a compute host as possible. This would create a more

dynamic workload and stress the system. At the same time, it is important to use full-

fledged VM images representing realistic user requirements. Therefore, the Ubuntu 12.04

Cloud Image [30] was used in the experiments, which is one of the Ubuntu VM images

available in Amazon EC2.

Since the compute hosts of the testbed contained limited amount of RAM, to maxi-

mize the number of VMs served by a single host, it was necessary to use a VM instance

type with the minimum amount of RAM sufficient for Ubuntu 12.04. The minimum re-

quired amount of RAM was empirically determined to be 128 MB. This resulted in the

maximum of 28 VMs being possible to instantiate on a single compute host. Therefore,

to maximize potential benefits of dynamic VM consolidation on the testbed containing 4

compute nodes, the total number of VM instances was set to 28, so that in an ideal case

all of them can be placed on a single compute host, while the other 3 hosts are kept idle.

Out of the 33 filtered PlanetLab workload traces discussed in Section 6.6.1, 28 traces were

randomly selected, i.e., one unique 24-hour trace for each VM instance. The full set of

selected traces is available online [14].

During the experiments, all the configuration parameters of OpenStack Neat were

set to their default values listed in Table 6.2 except for the configuration of the overload

detection algorithm. The overload detection algorithm was changed for each experiment

by going through the following list of algorithms and their parameters:

1. MAX-ITF algorithm – a base line algorithm, which never detects host overloads

leading to the maximum ITF for the host, where the algorithm is used.

2. The THR algorithm with the n parameter set to 2, and the CPU utilization thresh-

old set to 0.8, 0.9, and 1.0.

188 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

3. The LRR algorithm with the safety parameter set to 0.9, 1.0, and 1.1.

4. The MHOD algorithm with the OTF parameter set to 0.2, 0.3, and 0.4.

Each experiment was run 3 times to handle the variability caused by random factors,

such as the initial VM placement, workload trace assignment, and component communi-

cation latency. All the system initialization and result processing scripts, along with the

experiment result packages are available online [14].

6.7.3 Experimental Results and Analysis

The results of experiments are graphically depicted in Figure 6.6. The mean values of

the obtained AITF and AOTF metrics, and the number of VM migrations along with

their 95% Confidence Intervals (CIs) are displayed in Table 6.7. The results of MAX-ITF

show that for the current experiment setup it is possible to obtain high values of AITF

of up to 50%, while incurring a high AOTF of more than 40%. All the THR, LRR, and

MHOD allow tuning of the AITF values by adjusting the algorithm parameters. For the

THR algorithm, the mean AITF increases from 36.9% to 49.2% with the corresponding

decrease in the QoS level from 15.4% to 42.2% by varying the CPU utilization threshold

from 0.8 to 1.0. The mean number of VM migrations decreases from 167.7 for the 80%

threshold to 11.3 for the 100% threshold. The THR algorithm with the CPU utilization

threshold set to 100% reaches the mean AITF shown by the MAX-ITF algorithm, which

is expected as setting the threshold to 100% effectively disables host overload detection.

Similarly, adjusting the safety parameter of the LRR algorithm from 1.1 to 0.9 leads to an

increase of the mean AITF from 37.9% to 47.3% with a growth of the mean AOTF from

Table 6.7: The experimental results (mean values with 95% CIs)

Algorithm AITF AOTF VM migrations
THR-0.8 36.9% (35.6, 38.2) 15.4% (12.5, 18.3) 167.7 (152.7, 182.6)
THR-0.9 43.0% (42.6, 43.5) 27.0% (25.7, 28.1) 75.3 (70.2, 80.5)
THR-1.0 49.2% (49.2, 49.4) 42.2% (33.0, 51.3) 11.3 (9.9, 12.8)
LRR-1.1 37.9% (37.9, 38.0) 17.8% (12.8, 22.7) 195.7 (158.3, 233.0)
LRR-1.0 40.3% (38.1, 42.4) 23.8% (21.4, 26.1) 93.7 (64.6, 122.8)
LRR-0.9 47.3% (45.2, 49.4) 34.4% (28.8, 40.0) 28.3 (23.2, 33.5)
MHOD-0.2 37.7% (36.8, 38.5) 16.0% (13.5, 18.5) 158.3 (153.2, 163.5)
MHOD-0.3 38.1% (37.7, 38.5) 17.9% (16.8, 18.9) 138.0 (81.6, 194.4)
MHOD-0.4 40.7% (37.0, 44.4) 21.4% (16.7, 26.0) 116.3 (26.6, 206.0)
MAX-ITF 49.2% (49.1, 49.3) 40.4% (35.8, 44.9) 14.0 (7.4, 20.6)

6.7 Performance Evaluation 189

17.8% to 34.4% and decrease of the mean number of VM migrations from 195.7 to 28.3.

THR-1.0 reaches the mean AITF of 49.2% with the mean AOTF of 42.2%, while LRR-

0.9 reaches a close mean AITF of 47.3% with the mean AOTF of only 34.4%, which is a

significant decrease compared with the AOTF of THR-1.0.

Varying the OTF parameter of the MHOD algorithm from 0.2 to 0.4 leads to an in-

crease of the mean AITF from 37.7% to 40.7% with an increase of the mean AOTF from

16.0% to 21.4%. First of all, it is important to note that the algorithm meets the specified

QoS constraint by keeping the value of the AOTF metric below the specified OTF param-

eters. However, the resulting mean AOTF is significantly lower than the specified OTF

parameters: 17.9% for the 30% OTF, and 21.4% for the 40% OTF. This can be explained

by a combination of two factors: (1) the MHOD algorithm is parameterized by the per-

host OTF, rather than AOTF, which means that it meets the OTF constraint for each host

independently; (2) due to the small scale of the experimental testbed, a single under-

loaded host used for offloading VMs from overloaded hosts is able to significantly skew

the AITF metric. The AITF metric is expected to be closer to the specified OTF parameter

for large-scale OpenStack Neat deployments. A comparison of the results produced by

LRR-1.1 and LRR-1.0 with MHOD-0.2 and MHOD-0.4 reveals that the MHOD algorithm

leads to lower values of the AOTF metric (higher level of QoS) for approximately equal

values of the AITF metric.

Using the obtained AITF and AOTF metrics for each algorithm and data on power

consumption by servers, it is possible to compute estimates of potential energy savings

relatively to a non-power-aware system assuming that hosts are switched to the sleep

mode during every idle period. To obtain a lower bound on the estimated energy savings,

it is assumed that when dynamic VM consolidation is applied, the CPU utilization of

each host is 80% when it is active and non-overloaded, and 100% when it is overloaded.

According to the data provided by Meisner et al. [81], power consumption of a typical

blade server is 450 W in the fully utilized state, 270 W in the idle state, and 10.4 W in

the sleep mode. Using the linear server power model proposed by Fan et al. [44] and the

power consumption data provided by Meisner et al. [81], it is possible to calculate power

consumption of a server at any utilization level.

To calculate the base energy consumption by a non-power-aware system, it is as-

190 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

Table 6.8: Energy consumption estimates

Algorithm Energy, kWh Base energy, kWh Energy savings
THR-0.8 25.99 34.65 24.99%
THR-0.9 24.01 33.80 28.96%
THR-1.0 22.09 32.93 32.91%
LRR-1.1 25.66 34.50 25.63%
LRR-1.0 24.96 34.18 26.97%
LRR-0.9 22.60 33.20 31.93%
MHOD-0.2 25.70 34.53 25.59%
MHOD-0.3 25.59 34.48 25.76%
MHOD-0.4 24.72 34.12 27.54%
MAX-ITF 22.07 32.94 33.01%

sumed that in such a system all the compute hosts are always active with the load being

distributed across them. Since, the power model applied in this study is linear, it is does

not matter how exactly the load is distributed across the servers. The estimated energy

consumption levels for each overload detection algorithm, along with the corresponding

base energy consumption by a non-power-aware system, and percentages of the esti-

mated energy savings are presented in Table 6.8.

According to the estimates, MAX-ITF leads to the highest energy savings over the

base energy consumption of approximately 33% by the cost of substantial performance

degradation (AOTF = 40.4%). The THR, LRR, and MHOD algorithms lead to energy

savings from approximately 25% to 32% depending on the specified parameters. Sim-

ilarly to the above comparison of algorithms using the AITF metric, LRR-0.9 produces

energy savings close to those of THR-1.0 (31.93% compared with 32.91%), while signifi-

cantly reducing the mean AOTF from 42.2% to 34.4%. The MHOD algorithm produces

approximately equal or higher energy savings than the LRR algorithm with lower mean

AITF values, i.e., higher levels of QoS, while also providing the advantage of specifying

a QoS constraint as a parameter of the algorithm. The obtained experimental results con-

firm the hypothesis that dynamic VM consolidation is able to significantly reduce energy

consumption in an IaaS Cloud with a limited performance impact.

Table 6.9 lists mean values of the execution time along with 95% CIs measured for

each overload detection algorithm during the experiments for some of the system com-

ponents: processing underload and overload requests by the Global Manager (GM), over-

load detection algorithms executed by the Local Manager (LM), and iterations of the Data

Collector (DC). Request processing by the global manager takes on average between 30

6.7 Performance Evaluation 191

Table 6.9: The execution time of components in seconds (mean values with 95% CIs)

Algorithm GM underload GM overload LM overload DC
THR 33.5 (26.4, 40.5) 60.3 (54.0, 66.7) 0.003 (0.000, 0.006) 0.88 (0.84, 0.92)
LRR 34.4 (27.6, 41.1) 50.3 (47.8, 52.8) 0.006 (0.003, 0.008) 0.76 (0.73, 0.80)
MHOD 41.6 (27.1, 56.1) 53.7 (50.9, 56.6) 0.440 (0.429, 0.452) 0.92 (0.88, 0.96)
MAX-ITF 41.7 (9.6, 73.7) – 0.001 (0.000, 0.001) 1.03 (0.96, 1.10)

and 60 seconds, which is mostly determined by the time required to migrate VMs. The

mean execution time of the MHOD algorithm is higher than those of THR and LRR,

while still being under half a second resulting in a negligible overhead considering that

it is executed at most once in 5 minute. The mean execution time of an iteration of the

data collector is similarly under a second, which is also negligible considering that it is

executed only once in 5 minutes.

6.7.4 Scalability Remarks

Scalability and eliminating single points of failure are important benefits of designing

a dynamic VM consolidation system in a distributed way. According to the approach

adopted in the design of OpenStack Neat, the underload / overload detection and VM

selection algorithms are able to inherently scale with the increased number of compute

hosts. This is due to the fact that they are executed independently on each compute host

and do not rely on information about the global state of the system. In regard to the

database setup, there exist distributed database solutions, e.g., the MySQL Cluster [90].

On the other hand, in the current implementation of OpenStack Neat, there assumed

to be only one instance of the global manager deployed on a single controller host. This

limits the scalability of VM placement decisions and creates a single point of failure.

However, even with this limitation the overall scalability of the system is significantly

improved compared with existing completely centralized VM consolidation solutions.

Compared with centralized solutions, the only functionality implemented in OpenStack

Neat by the central controller is the placement of VMs selected for migration, which con-

stitute only a fraction of the total number of VMs in the system. To address the problem

of a single point of failure, it is possible to run a second instance of the global manager,

which initially does not receive requests from the local managers and gets automatically

192 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

activated when the primary instance of the global manager fails. However, the problem

of scalability is more complex since it is necessary to have multiple independent global

managers concurrently serving requests from local managers.

Potentially it is possible to implement replication of the global manager in line with

OpenStack’s approach to scalability by replication of its services. From the point of view

of communication between the local and global managers, replication can be simply im-

plemented by a load balancer that distributes requests from the local managers across

the set of replicated global managers. A more complex problem is synchronizing the ac-

tivities of the replicated global managers. It is necessary to avoid situations when two

global managers place VMs on a single compute host simultaneously, since that would

imply that they use an out-of-date view of the system state. One potential solution to

this problem could be a continuous exchange of information between global managers

during the process of execution of the VM placement algorithm, i.e., if a host is selected

by a global manager for a VM, it should notify the other global managers to exclude that

host from their sets of available destination hosts.

6.8 Conclusions

This chapter has presented a design and implementation of an open source framework

for dynamic VM consolidation in OpenStack Clouds, called OpenStack Neat. The frame-

work follows a distributed model of dynamic VM consolidation, where the problem is

divided into 4 sub-problems: host underload detection, host overload detection, VM

selection, and VM placement. Through its configuration, OpenStack Neat can be cus-

tomized to use various implementations of algorithms for each for the 4 sub-problems of

dynamic VM consolidation. OpenStack Neat is transparent to the base OpenStack instal-

lation by interacting with it using the public APIs, and not requiring any modifications

of OpenStack’s configuration. In addition, a benchmark suite has been proposed that

comprises OpenStack Neat as the base software framework, a set of PlanetLab workload

traces, performance metrics, and methodology for evaluating and comparing dynamic

VM consolidation algorithms following the distributed model.

The experimental results and estimates of energy consumption have shown that Open-

6.8 Conclusions 193

Stack Neat is able to reduce energy consumption by the compute nodes of a 4-node

testbed by 25% to 33%, while resulting in a limited application performance impact from

approximately 15% to 40% AOTF. The MHOD algorithm has led to approximately equal

or higher energy savings with lower mean AOTF values compared with the other evalu-

ated algorithms, while also allowing the system administrator to explicitly specify a QoS

constraint in terms of the OTF metric.

The performance overhead of the framework is nearly negligible taking on average

only a fraction of a second to execute iterations of the components. The request process-

ing of the global manager takes on average between 30 and 60 seconds and is mostly

determined by the time required to migrate VMs. The results have shown that dynamic

VM consolidation brings significant energy savings with a limited impact on the appli-

cation performance. The proposed framework can be applied in both further research

on dynamic VM consolidation, and real OpenStack Cloud deployments to improve the

utilization of resources and reduce energy consumption.

194 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation

M
A

X
-I
T
F

M
H

O
D

-0
.4

M
H

O
D

-0
.3

M
H

O
D

-0
.2

L
R
R
-0

.9

L
R
R
-1

.0

L
R
R
-1

.1

T
H

R
-1

.0

T
H

R
-0

.9

T
H

R
-0

.8

0.500

0.475

0.450

0.425

0.400

0.375

0.350

Algorithm

A
IT

F

(a) The AITF metric

M
A

X
-I
T
F

M
H

O
D

-0
.4

M
H

O
D

-0
.3

M
H

O
D

-0
.2

L
R
R
-0

.9

L
R
R
-1

.0

L
R
R
-1

.1

T
H

R
-1

.0

T
H

R
-0

.9

T
H

R
-0

.8

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Algorithm

A
O

T
F

(b) The AOTF metric

M
A

X
-I
T
F

M
H

O
D

-0
.4

M
H

O
D

-0
.3

M
H

O
D

-0
.2

L
R
R
-0

.9

L
R
R
-1

.0

L
R
R
-1

.1

T
H

R
-1

.0

T
H

R
-0

.9

T
H

R
-0

.8

200

175

150

125

100

75

50

25

0

Algorithm

V
M

 m
ig

ra
ti

o
n

s

(c) The number of VM migrations

Figure 6.6: The experimental results

Chapter 7

Conclusions and Future Directions

This chapter summarizes the research work on energy-efficient resource management in Cloud data

centers presented in this thesis and highlights the main findings. It also discusses open research

problems in the area and outlines a number of future research directions.

7.1 Conclusions and Discussion

CLOUD computing has made the vision of computing resources as a utility another

step closer to the reality. As the technology advances and network access becomes

faster and with lower latency, the model of delivering computing power remotely over

the Internet will proliferate. Therefore, Cloud data centers are expected to grow and

accumulate a larger fraction of the world’s computing resources. In this context, energy-

efficient management of data center resources is a crucial problem in regard to both the

operating costs and CO2 emissions to the environment.

This thesis has proposed and investigated a suite of novel techniques for implement-

ing distributed dynamic VM consolidation in IaaS Clouds under workload-independent

QoS constraints. The proposed approach improves the utilization of data center resources

and reduces energy consumption, while satisfying the defined QoS requirements. Pike

Research [96] forecasts that research, such as presented in this thesis, will facilitate the

reduction of the data center energy expenditures from $23.3 billion in 2010 to $16.0 bil-

lion in 2020, as well as cause a 28% reduction in greenhouse gas emissions from the 2010

levels as a result of adoption of the Cloud computing model in delivering IT services.

In addition to the complexity of implementing dynamic VM consolidation, IaaS Clouds

being the target environments imply extra requirements, such as satisfying workload-

independent QoS constraints and distributed architecture of the VM management system

195

196 Conclusions and Future Directions

to provide scalability and eliminate single points of failure. To address the formulated

research issues, this thesis has achieved each of the objectives delineated in Chapter 1.

In particular, Chapter 2 presented an in-depth review, analysis, and taxonomy of the

area of energy-efficient resource management in computing systems at the hardware and

firmware, OS, virtualization, and data centers levels. The research literature analysis has

helped to identify gaps, open challenges, and clearly determine the research direction

undertaken in the thesis.

In Chapter 3, dynamic VM consolidation algorithms have been analyzed to obtain

theoretical performance estimates and insights into designing online algorithms for dy-

namic VM consolidation. The chapter has concluded with a discussion of potential ben-

efits of randomized online algorithms. Another conclusion has been that real workloads

often exhibit interrelations between subsequent workload states; therefore, dynamic VM

consolidation algorithm can be improved by assuming that future workload states can

be predicted to some degree based on the history of the observed system behavior. How-

ever, such algorithms cannot be analyzed using simple distributional or adversary mod-

els, such as oblivious adversary, as realistic workloads require more complex modeling,

e.g. using Markov chains [105].

To address the next objective, Chapter 4 has proposed a workload-independent QoS

metric that can be used in defining system-wide QoS constraints. The proposed OTF

metric is based on the observation that the application performance degrades when the

utilization of the server’s CPU reaches 100%. According to this idea, the metric is defined

as a fraction of time when the server has been overloaded relatively to the total activity

time. The metric can be extended to span multiple servers forming the AOTF metric

by substituting the time values with the aggregate values over the full set of servers.

Moreover, the metric is adjustable to system requirements by tuning the threshold of the

CPU utilization defining the overload state. For instance, a server can be considered to

be overloaded when its utilization exceeds 80%. Such tuning is useful in cases when the

application performance is known to degrade after a certain level of CPU utilization.

In addition, Chapter 4 has proposed an approach to distributed dynamic VM consol-

idation consisting in splitting the problem into 4 sub-problems: (1) host underload detec-

tion; (2) host overload detection; (3) VM selection; and (4) VM placement. Splitting the

7.1 Conclusions and Discussion 197

problem allows executing algorithms for the first 3 sub-problems in a distributed manner

independently on each compute node. VM placement decisions still need to be made by

a global manager; however, the load on the global manager is significantly reduced since

it only makes placement decisions for the VMs selected for migration. Moreover, the

global manager can be replicated, thus eliminating a single point of failure and making

the system completely distributed and decentralized.

Host overload detection is the sub-problem of distributed dynamic VM consolidation

that directly influences the QoS delivered by the system. Therefore, to provide reliable

QoS, Chapter 5 has investigated a host overload detection algorithm based on a Markov

chain model, which allows an explicit specification of a QoS goal in terms of the OTF

metric. Instead of tuning parameters of the algorithms to obtain the required QoS level,

the proposed MHOD algorithm accepts a parameter that serves as an OTF constraint.

Apart from the theoretical exploration and simulation-based evaluation of the pro-

posed algorithms, the presented work resulted in an open source implementation of

OpenStack Neat1, a software framework for distributed dynamic VM consolidation in

IaaS Clouds. The framework presented in Chapter 6 is implemented as an add-on to the

OpenStack Cloud platform2, which can be transparently attached to existing OpenStack

installations. The framework is extensible, as it enables configuration-based substitution

of algorithms for each sub-problem of distributed dynamic VM consolidation. Exper-

iments conducted on a 5-node testbed have shown that dynamic VM consolidation is

able to reduce energy consumption by the compute nodes by up to 30% with a limited

application performance impact.

The framework has been designed and implemented to both be used as a tool in fur-

ther academic research on distributed dynamic VM consolidation algorithms, and be ap-

plied in real-world OpenStack Cloud deployments to improve the utilization of resources

and save energy. In addition, to facilitate further research efforts in the area, Chapter 6

has outlined a benchmark suite comprising OpenStack Neat as the base software frame-

work, a set of PlanetLab workload traces, performance metrics, and methodology for

evaluating and comparing distributed dynamic VM consolidation algorithms.

1The OpenStack Neat framework. http://openstack-neat.org/
2The OpenStack platform. http://openstack.org/

http://openstack-neat.org/
http://openstack.org/

198 Conclusions and Future Directions

7.2 Future Research Directions

Despite substantial contributions of the current thesis in energy-efficient distributed dy-

namic VM consolidation, there are a number of open research challenges that need to be

addressed in order to further advance the area.

7.2.1 Advanced Distributed VM Placement Algorithms

Replication of the global managers would lead to multiple instances of the VM placement

algorithm being executed concurrently on multiple controller nodes. It is important to de-

velop advanced VM placement algorithms that would efficiently exchange information

between the algorithm instances to reduce the impact of the distribution and provide the

quality of VM placement close to centralized algorithms.

The currently proposed version of the VM placement algorithm implemented in Open-

Stack Neat processes each VM placement request received from local managers individu-

ally. There is scope for improvement in this regard, e.g., by buffering several subsequent

requests constrained by the time period and buffer size, and making a VM placement

decision taking into account the buffered requests simultaneously. It is important to care-

fully design and analyze such algorithms to provide close to optimal solutions, as even

slight variation of the parameter values may lead to significant performance deviation.

One approach is to apply the competitive analysis framework to analyze the proposed

algorithms and derive performance bounds.

Another potential improvement of the VM placement algorithm is implementing ex-

tra constraints on the VM placement. Such constraints can be useful when it is required

to co-allocate VMs on the physical server or a set of servers. For example, these require-

ments can be imposed by the users due to performance or privacy concerns.

7.2.2 VM Network Topologies

In virtualized data centers VMs often communicate with each other, establishing virtual

network topologies. However, due to VM migrations or non-optimized allocation, the

communicating VMs may end up hosted on logically distant physical nodes leading to

costly data transfers between them. If the communicating VMs are allocated to hosts in

7.2 Future Research Directions 199

different racks or enclosures, the network communication may involve network switches

that consume significant amounts of energy.

To eliminate this data transfer overhead and minimize energy consumption, it is nec-

essary to observe the communication between VMs and place the communicating VMs

on the same or closely located nodes. In particular, to provide efficient reallocations, it is

required to develop power consumption models of the network devices and estimate the

cost of data transfer depending on the traffic volume. Moreover, VM migrations consume

additional energy and have a negative impact on the performance. The VM placement

algorithm has to ensure that the cost of migration does not exceed the benefits.

7.2.3 Exploiting VM Resource Usage Patterns

IaaS environments allow the users to provision VMs on-demand and deploy any kind of

applications. This leads to the fact that different applications (e.g., HPC applications, web

services) may share a physical node. However, it is not obvious how these applications

influence each other in terms of performance, as they can be data, network or compute

intensive creating variable or static load on the resources.

The problem is to determine what kinds of applications can be co-allocated to provide

the most efficient overall resources usage. For example, it can be achieved by choosing

the applications that do not intensively use the same resource. A compute intensive

(scientific) application can be effectively combined with a web application (file server), as

the former mostly relies on the CPU performance, whereas the latter utilizes disk storage

and network bandwidth.

Therefore, it is important to investigate Cloud application workloads in order to iden-

tify common behaviors, patterns, and explore load forecasting approaches that can po-

tentially lead to more efficient resource provisioning and consequently higher energy

efficiency. Furthermore, it is necessary to develop VM consolidation algorithms that will

use the information about the historical workload patterns and application behavior to

select which applications will share physical resources. These will minimize the overlap-

ping of the resource usage by applications, and thus their influence on each other, as well

as reducing the amount of migration needed when their demand for resources changes.

200 Conclusions and Future Directions

7.2.4 Thermal-Aware Dynamic VM Consolidation

A significant part of electrical energy consumed by computing resources is transformed

into heat. High temperature leads to a number of problems, such as the reduced sys-

tem reliability and availability, as well as the decreased life time of the hardware. In

order to keep the system components within their safe operating temperature and pre-

vent failures and crashes, the emitted heat must be dissipated. The cooling problem be-

comes extremely important for modern blade and 1U rack servers that pack computing

resources with high density and complicate heat dissipation. For example, in a 30,000 ft2

data center with 1,000 standard computing racks, each consuming 10 kW, the initial cost

of purchasing and installing the infrastructure is $2-$5 million; with an average cost of

$10/MWh, the annual costs of cooling alone are $4-$8 million [94]. Therefore, apart from

the hardware improvements, it is essential to address the problem of optimizing the cool-

ing system operation from the resource management side.

One of the ways to minimize the cooling operating costs is to continuously moni-

tor thermal state of physical nodes and reallocate VMs from a node when it becomes

overheated. In this case, the cooling system of the offloaded node can be slowed down

allowing natural heat dissipation. Moreover, there has been research work on modeling

the thermal topology of a data center that can lead to more efficient workload place-

ment [63]. Therefore, it is necessary to investigate how and when to reallocate VMs to

minimize the power drawn by the cooling system, while preserving safe temperature of

the resources and minimizing the migration overhead and performance degradation.

7.2.5 Dynamic and Heterogeneous SLAs

Cloud data centers need to provide strict QoS guarantees, which are documented in the

form of SLAs. Resource provisioning within a data center directly influences whether the

SLAs are met. Current Cloud data centers host applications from clients distributed glob-

ally. These clients have very different requirements, which may also vary over time. For

example, an organization using Cloud services may require tighter response time guar-

antees in day time than in night time. To address the problem, it is necessary to develop

algorithms that exploit time variation in SLAs of the users to minimize the number of

7.2 Future Research Directions 201

physical servers required.

Currently, to simplify management, resources in Cloud data centers are allocated to

clients depending only on that client’s SLAs, regardless of the SLAs of other users. The

intrinsic differences among various SLAs can make huge differences in the amount of

resources allocated to each user. Although heterogeneous requirements of users make

scheduling and VM consolidation algorithms complex, they can be exploited to improve

energy-efficiency. It is important to devise and analyze algorithms that make use of such

heterogeneity. Moreover, to meet the requirements of large-scale Cloud data centers, it is

necessary to design a solution scalable to handling thousands of users.

7.2.6 Power Capping

As discussed in Chapter 2, power capping is a power management technique aimed at

meeting a power budget available for a computing system. This technique is useful in

environments where the overall power consumption is constrained by either the capacity

of the power delivery infrastructure, or by financial aspects. For instance, if the power

consumption by data center resources is tending to exceed the available power budget,

the resource management system may intentionally degrade the performance of the ap-

plications by down-scaling the hardware speed in order to keep the overall power con-

sumption within the budget. A potential future research direction could be an extension

of the distributed dynamic VM consolidation approach proposed in this thesis to take

into account the power budget aspect and implement power capping.

7.2.7 Competitive Analysis of Dynamic VM Consolidation Algorithms

As indicated in the literature review, the current approaches to dynamic VM consolida-

tion are weak in terms of providing performance guarantees. As proposed in this thesis,

one of the ways to prove performance bounds is to divide the problem of energy-efficient

dynamic VM consolidation into a few sub-problems that can be analyzed individually.

It is important to analytically model the problem and derive optimal and near optimal

approximation algorithms that provide provable efficiency. This has been done in Chap-

ter 3 by proving competitive ratios of online deterministic algorithms for dynamic VM

202 Conclusions and Future Directions

consolidation. The MHOD algorithm proposed in Chapter 5 is also derived based on an

analytical Markov chain model that allows a derivation of an optimal control policy for

known stationary workloads.

However, the performance guarantees of the proposed heuristic algorithms for the

problems of underload detection and VM selection have not yet been obtained. It is

important to conduct competitive analysis of these algorithms to derive theoretical per-

formance bounds and obtain insights into improving their performance. Furthermore,

meeting QoS constraints should be formally incorporated into the algorithms.

7.2.8 Replicated Global Managers

Scalability and eliminating single points of failure are important benefits of designing a

dynamic VM consolidation system in a distributed way. The approach proposed in this

thesis makes a big step towards completely distributed and decentralized dynamic VM

consolidation, as the underload / overload detection and VM selection algorithms are

able to inherently scale with the increased number of compute hosts – these algorithms

are executed independently on each compute node and do not rely on information about

the global state of the system.

However, it is assumed that there is only one instance of the global manager deployed

on a single controller host, which makes decisions regarding placement of VMs selected

for migration. This limits the scalability of VM placement decisions and creates a single

point of failure. To address the problem of a single point of failure, it is possible to run a

second instance of the global manager, which initially does not receive requests from the

local managers and gets automatically activated when the primary instance of the global

manager fails. However, the scalability problem is more complex since it requires multi-

ple independent global managers concurrently serving requests from local managers.

A potential solution is to investigate replication of the global manager, i.e., executing

multiple instances of the VM placement algorithm concurrently on multiple nodes. From

the point of view of communication between the local and global managers, replication

can be implemented by a load balancer that distributes requests from the local managers

across the set of replicated global managers. A more complex research problem is syn-

chronizing activities of the replicated global managers. It is necessary to avoid situations

7.3 Final Remarks 203

when two global managers place VMs on a single compute host simultaneously, since

that would imply that they use an out-of-date view of the system state. One potential so-

lution to this problem could be the continuous exchange of information between global

managers during the process of execution of the VM placement algorithm, i.e., if a host

is selected by a global manager for a VM, the other global managers should be notified

to exclude that host from their sets of available destination hosts. This problem is an

interesting direction for future research, and its solution would lead to a completely dis-

tributed and decentralized dynamic VM consolidation system.

7.3 Final Remarks

Clouds have evolved as the next-generation IT platform for hosting applications in sci-

ence, business, social networking, and media content delivery. Energy-efficient manage-

ment of Cloud infrastructure resources, and in particular dynamic VM consolidation ex-

plored in this thesis, will enable resource providers to successfully offer scalable service

provisioning with lower energy requirements, costs, and CO2 emissions. Research, such

as presented in this thesis, combined with open source technologies, such as the Open-

Stack platform and the OpenStack Neat framework3, will undoubtedly drive further in-

novation in Cloud computing and development of next generation computing systems.

3The OpenStack Neat framework. http://openstack-neat.org/

http://openstack-neat.org/

Bibliography

[1] H. Abdi, “Multiple correlation coefficient,” in Encyclopedia of Measurement and

Statistics, N. J. Salkind, Ed. Sage, Thousand Oaks, CA, USA, 2007, pp. 648–651.

[2] S. Albers, “Energy-efficient algorithms,” Communications of the ACM, vol. 53, no. 5,

pp. 86–96, 2010.

[3] V. Anagnostopoulou, S. Biswas, H. Saadeldeen, A. Savage, R. Bianchini, T. Yang,

D. Franklin, and F. T. Chong, “Barely alive memory servers: Keeping data active

in a low-power state,” ACM Journal on Emerging Technologies in Computing Systems

(JETC), vol. 8, no. 4, pp. 31:1–31:20, 2012.

[4] M. Andreolini, S. Casolari, and M. Colajanni, “Models and framework for support-

ing runtime decisions in web-based systems,” ACM Transactions on the Web (TWEB),

vol. 2, no. 3, pp. 17:1–17:43, 2008.

[5] L. L. Andrew, M. Lin, and A. Wierman, “Optimality, fairness, and robustness in

speed scaling designs,” in Proceedings of the ACM International Conference on Mea-

surement and Modeling of Computer Systems (SIGMETRICS), 2010, pp. 37–48.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of Cloud computing,”

Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2009.

[7] ASHRAE, TC, “Thermal guidelines for data processing environments,” American

Society of Heating and Refrigerating and Air-Conditioning Engineers, Tech. Rep.

9.9, 2004.

205

206 BIBLIOGRAPHY

[8] J. Baliga, R. Ayre, K. Hinton, and R. S. Tucker, “Green Cloud computing: Balancing

energy in processing, storage and transport,” Proceedings of the IEEE, vol. 99, no. 1,

pp. 149–167, 2011.

[9] J. Baliga, K. Hinton, and R. S. Tucker, “Energy consumption of the Internet,” in

Proceedings of the International Conference on the Optical Internet (COIN) with the 32nd

Australian Conference on Optical Fibre Technology (ACOFT), 2007, pp. 1–3.

[10] P. Barford and M. Crovella, “Generating representative web workloads for network

and server performance evaluation,” ACM SIGMETRICS Performance Evaluation Re-

view, vol. 26, no. 1, pp. 151–160, 1998.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield, “Xen and the art of virtualization,” in Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP), 2003, pp. 16–177.

[12] L. A. Barroso, “The price of performance,” Queue, vol. 3, no. 7, pp. 48–53, 2005.

[13] L. A. Barroso and U. Holzle, “The case for energy-proportional computing,” Com-

puter, vol. 40, no. 12, pp. 33–37, 2007.

[14] A. Beloglazov, “Scripts for setting up and analyzing results of experiments

using OpenStack Neat,” (accessed on 26/11/2012). [Online]. Available: http:

//github.com/beloglazov/spe-2012-experiments

[15] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuris-

tics for efficient management of data centers for Cloud computing,” Future Genera-

tion Computer Systems (FGCS), vol. 28, no. 5, pp. 755–768, 2011.

[16] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adap-

tive heuristics for energy and performance efficient dynamic consolidation of vir-

tual machines in Cloud data centers,” Concurrency and Computation: Practice and

Experience (CCPE), vol. 24, no. 13, pp. 1397–1420, 2012.

[17] ——, “Managing overloaded hosts for dynamic consolidation of virtual machines

in Cloud data centers under quality of service constraints,” IEEE Transactions on

Parallel and Distributed Systems (TPDS), vol. 24, no. 7, pp. 1366–1379, 2013.

http://github.com/beloglazov/spe-2012-experiments
http://github.com/beloglazov/spe-2012-experiments

BIBLIOGRAPHY 207

[18] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A taxonomy and survey of

energy-efficient data centers and Cloud computing systems,” Advances in Comput-

ers, M. Zelkowitz (ed.), vol. 82, pp. 47–111, 2011.

[19] A. Beloglazov, S. F. Piraghaj, M. Alrokayan, and R. Buyya, “Deploying Open-

Stack on CentOS using the KVM hypervisor and GlusterFS distributed file sys-

tem,” CLOUDS-TR-2012-3, CLOUDS Laboratory, The University of Melbourne,

Australia, Tech. Rep., 2012.

[20] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design techniques for

system-level dynamic power management,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 8, no. 3, pp. 299–316, 2000.

[21] L. Benini, A. Bogliolo, G. A. Paleologo, and G. D. Micheli, “Policy optimization

for dynamic power management,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 18, no. 6, pp. 813–833, 1999.

[22] M. Blackburn, “Five ways to reduce data center server power consumption,” The

Green Grid, Tech. Rep., 2008.

[23] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines for

managing SLA violations,” in Proceedings of the 10th IFIP/IEEE International Sympo-

sium on Integrated Network Management (IM), 2007, pp. 119–128.

[24] G. Bolch, Queueing networks and Markov chains: modeling and performance evaluation

with computer science applications. Wiley-Blackwell, 2006.

[25] A. Borodin and R. El-Yaniv, Online computation and competitive analysis. Cambridge

University Press, New York, 1998, vol. 53.

[26] G. Buttazzo, “Scalable applications for energy-aware processors,” in Embedded

Software, ser. Lecture Notes in Computer Science, A. Sangiovanni-Vincentelli and

J. Sifakis, Eds. Springer Berlin Heidelberg, 2002, vol. 2491, pp. 153–165.

[27] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management of data

center resources for Cloud computing: A vision, architectural elements, and open

208 BIBLIOGRAPHY

challenges,” in Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA), 2010, pp. 1–12.

[28] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as

the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[29] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,

“CloudSim: A toolkit for modeling and simulation of Cloud computing environ-

ments and evaluation of resource provisioning algorithms,” Software: Practice and

Experience, vol. 41, no. 1, pp. 23–50, 2011.

[30] Canonical Ltd., “Ubuntu 12.04 (Precise Pangolin) Cloud images,” (accessed

on 22/11/2012). [Online]. Available: http://uec-images.ubuntu.com/precise/

current/

[31] M. Cardosa, M. Korupolu, and A. Singh, “Shares and utilities based power con-

solidation in virtualized server environments,” in Proceedings of the 11th IFIP/IEEE

International Symposium on Integrated Network Management (IM), 2009, pp. 327–334.

[32] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle, “Managing

energy and server resources in hosting centers,” ACM SIGOPS Operating Systems

Review, vol. 35, no. 5, pp. 103–116, 2001.

[33] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam, “Man-

aging server energy and operational costs in hosting centers,” ACM SIGMETRICS

Performance Evaluation Review, vol. 33, no. 1, pp. 303–314, 2005.

[34] E. Y. Chung, L. Benini, A. Bogliolo, Y. H. Lu, and G. D. Micheli, “Dynamic power

management for nonstationary service requests,” IEEE Transactions on Computers,

vol. 51, no. 11, pp. 1345–1361, 2002.

[35] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield, “Live migration of virtual machines,” in Proceedings of the 2nd USENIX

Symposium on Networked Systems Design and Implementation (NSDI), 2005, pp. 273–

286.

http://uec-images.ubuntu.com/precise/current/
http://uec-images.ubuntu.com/precise/current/

BIBLIOGRAPHY 209

[36] W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,”

Journal of the American Statistical Association, vol. 74, no. 368, pp. 829–836, 1979.

[37] ——, Visualizing data. Hobart Press, Summit, New Jersey, 1993.

[38] W. S. Cleveland and C. Loader, “Smoothing by local regression: Principles and

methods,” Statistical Theory and Computational Aspects of Smoothing, vol. 1049, pp.

10–49, 1996.

[39] S. B. David, A. Borodin, R. Karp, G. Tardos, and A. Widgerson, “On the power of

randomization in online algorithms,” in Proceedings of the 22nd Annual ACM Sym-

posium on Theory of Computing (STOC), 1990, pp. 379–386.

[40] S. Devadas and S. Malik, “A survey of optimization techniques targeting low

power VLSI circuits,” in Proceedings of the 32nd Annual ACM/IEEE Design Automa-

tion Conference (DAC), 1995, pp. 242–247.

[41] G. Dhiman, K. Mihic, and T. Rosing, “A system for online power prediction in

virtualized environments using gaussian mixture models,” in Proceedings of the 47th

Annual ACM/IEEE Design Automation Conference (DAC), 2010, pp. 807–812.

[42] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive disk spin-down policies for

mobile computers,” Computing Systems, vol. 8, no. 4, pp. 381–413, 1995.

[43] E. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server clusters,” in

Power-Aware Computer Systems, ser. Lecture Notes in Computer Science, B. Falsafi

and T. Vijaykumar, Eds. Springer Berlin Heidelberg, 2003, vol. 2325, pp. 179–197.

[44] X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized

computer,” in Proceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA), 2007, pp. 13–23.

[45] D. G. Feitelson, “Workload modeling for performance evaluation,” in Performance

Evaluation of Complex Systems: Techniques and Tools, ser. Lecture Notes in Computer

Science, M. C. Calzarossa and S. Tucci, Eds. Springer Berlin Heidelberg, 2002, vol.

2459, pp. 114–141.

210 BIBLIOGRAPHY

[46] E. Feller, L. Rilling, and C. Morin, “Snooze: A scalable and autonomic virtual

machine management framework for private Clouds,” in Proceedings of the 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid),

2012, pp. 482–489.

[47] E. Feller, C. Rohr, D. Margery, and C. Morin, “Energy management in IaaS Clouds:

A holistic approach,” in Proceedings of the 5th IEEE International Conference on Cloud

Computing (IEEE CLOUD), 2012, pp. 204–212.

[48] K. Flautner, S. Reinhardt, and T. Mudge, “Automatic performance setting for dy-

namic voltage scaling,” Wireless networks, vol. 8, no. 5, pp. 507–520, 2002.

[49] J. Flinn and M. Satyanarayanan, “Managing battery lifetime with energy-aware

adaptation,” ACM Transactions on Computer Systems (TOCS), vol. 22, no. 2, pp. 137–

179, 2004.

[50] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power allocation in

server farms,” in Proceedings of the 11th Joint International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS/Performance), 2009, pp. 157–168.

[51] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-conscious

scheduling of HPC applications on distributed Cloud-oriented data centers,” Jour-

nal of Parallel and Distributed Computing (JPDC), vol. 71, no. 6, pp. 732–749, 2011.

[52] Gartner, Inc., “Gartner estimates ICT industry accounts for 2 percent of

global CO2 emissions,” 2007, (accessed on 17/01/2013). [Online]. Available:

http://www.gartner.com/it/page.jsp?id=503867

[53] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for pareto-optimal

congurations in parameterized systems-on-a-chip,” in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2001, pp. 25–30.

[54] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kemper, “An

integrated approach to resource pool management: Policies, efficiency and qual-

ity metrics,” in Proceedings of the 38th IEEE International Conference on Dependable

Systems and Networks (DSN), 2008, pp. 326–335.

http://www.gartner.com/it/page.jsp?id=503867

BIBLIOGRAPHY 211

[55] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool management:

Reactive versus proactive or let’s be friends,” Computer Networks, vol. 53, no. 17,

pp. 2905–2922, 2009.

[56] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithm for dynamic speed-

setting of a low-power CPU,” in Proceedings of the 1st Annual International Conference

on Mobile Computing and Networking (MobiCom), 1995, pp. 13–25.

[57] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance, and reliability

tradeoffs for energy-aware server provisioning,” in Proceedings of the 30st Annual

IEEE International Conference on Computer Communications (INFOCOM), 2011, pp.

1332–1340.

[58] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr, and R. Bianchini, “Energy conser-

vation in heterogeneous server clusters,” in Proceedings of the 10th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2005, pp. 186–195.

[59] F. Hermenier, X. Lorca, J. Menaud, G. Muller, and J. Lawall, “Entropy: A consoli-

dation manager for clusters,” in Proceedings of the ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments (VEE), 2009, pp. 41–50.

[60] P. J. Huber, E. Ronchetti, and E. Corporation, Robust statistics. Wiley Online Li-

brary, 1981, vol. 1.

[61] C. H. Hwang and A. C. Wu, “A predictive system shutdown method for energy

saving of event-driven computation,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), vol. 5, no. 2, pp. 226–241, 2000.

[62] S. Irani, R. Gupta, and S. Shukla, “Competitive analysis of dynamic power man-

agement strategies for systems with multiple power savings states,” in Proceedings

of the Conference on Design, Automation and Test in Europe (DATE), 2002, pp. 117–123.

[63] P. Johnson and T. Marker, “Data centre energy efficiency product profile,” Equip-

ment Energy Efficiency Committee (E3) of the Australian Government Department

of the Environment, Water, Heritage and the Arts (DEWHA), Tech. Rep., 2009.

212 BIBLIOGRAPHY

[64] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mistral: Dy-

namically managing power, performance, and adaptation cost in Cloud infrastruc-

tures,” in Proceedings of the 30th International Conference on Distributed Computing

Systems (ICDCS), 2010, pp. 62–73.

[65] M. G. Kendall and J. K. Ord, Time-series. Oxford University Press, Oxford, 1973.

[66] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning of Cloud re-

sources for real-time services,” in Proceedings of the 7th International Workshop on

Middleware for Grids, Clouds and e-Science (MGC), 2009, pp. 1–6.

[67] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The Linux virtual

machine monitor,” in Proceedings of the Linux Symposium, vol. 1, 2007, pp. 225–230.

[68] G. Koch, “Discovering multi-core: Extending the benefits of moore’s law,” Technol-

ogy, vol. 1, 2005.

[69] J. G. Koomey, “Estimating total power consumption by servers in the US and the

world,” Lawrence Berkeley National Laboratory, Tech. Rep., 2007.

[70] ——, “Growth in data center electricity use 2005 to 2010,” Analytics Press, Tech.

Rep., 2011.

[71] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan, “vManage: Loosely

coupled platform and virtualization management in data centers,” in Proceedings of

the 6th International Conference on Autonomic Computing (ICAC), 2009, pp. 127–136.

[72] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang, “Power and

performance management of virtualized computing environments via lookahead

control,” Cluster Computing, vol. 12, no. 1, pp. 1–15, 2009.

[73] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-time sys-

tems,” in Proceedings of the 37nd Annual ACM/IEEE Design Automation Conference

(DAC), 2000, pp. 806–809.

[74] L. Lefèvre and A.-C. Orgerie, “Designing and evaluating an energy efficient

Cloud,” The Journal of Supercomputing, vol. 51, no. 3, pp. 352–373, 2010.

BIBLIOGRAPHY 213

[75] H. Li, “Workload dynamics on clusters and grids,” The Journal of Supercomputing,

vol. 47, no. 1, pp. 1–20, 2009.

[76] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew, “Online algorithms for geo-

graphical load balancing,” in Proceedings of the 3rd International Green Computing

Conference (IGCC), 2012, pp. 1–10.

[77] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-sizing

for power-proportional data centers,” in Proceedings of the 30th IEEE International

Conference on Computer Communications (INFOCOM), 2011, pp. 1098–1106.

[78] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew, “Greening geographic

load balancing,” in Proceedings of the ACM International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS), 2011, pp. 233–244.

[79] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms with

PACE,” ACM SIGMETRICS Performance Evaluation Review, vol. 29, no. 1, pp. 50–61,

2001.

[80] S. O. Luiz, A. Perkusich, and A. M. N. Lima, “Multisize sliding window in work-

load estimation for dynamic power management,” IEEE Transactions on Computers,

vol. 59, no. 12, pp. 1625–1639, 2010.

[81] D. Meisner, B. Gold, and T. Wenisch, “PowerNap: eliminating server idle power,”

ACM SIGPLAN Notices, vol. 44, no. 3, pp. 205–216, 2009.

[82] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-placement algorithms for

on-demand Clouds,” in Proceedings of the 3rd IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), 2011, pp. 91–98.

[83] L. Minas and B. Ellison, Energy Efficiency for Information Technology: How to Reduce

Power Consumption in Servers and Data Centers. Intel Press, 2009.

[84] G. E. Moore et al., “Cramming more components onto integrated circuits,” Proceed-

ings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

214 BIBLIOGRAPHY

[85] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform heterogeneity for power

efficient data centers,” in Proceedings of the 4th International Conference on Autonomic

Computing (ICAC), 2007, pp. 5–5.

[86] R. Nathuji and K. Schwan, “VirtualPower: Coordinated power management in vir-

tualized enterprise systems,” ACM SIGOPS Operating Systems Review, vol. 41, no. 6,

pp. 265–278, 2007.

[87] R. Neugebauer and D. McAuley, “Energy is just another resource: Energy account-

ing and energy pricing in the nemesis OS,” in Proceedings of the 8th IEEE Workshop

on Hot Topics in Operating Systems (HotOS), 2001, pp. 59–64.

[88] P. W. Ong and R. H. Yan, “Power-conscious software design – a framework for

modeling software on hardware,” in Proceedings of the IEEE Symposium on Low

Power Electronics, 1994, pp. 36–37.

[89] Open Compute Project, “Energy efficiency,” (accessed on 21/11/2012). [Online].

Available: http://opencompute.org/about/energy-efficiency/

[90] Oracle Corporation, “MySQL cluster CGE,” (accessed on 23/11/2012). [Online].

Available: http://www.mysql.com/products/cluster/

[91] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in Proceedings of the

Linux Symposium, vol. 2, 2006, pp. 215–230.

[92] K. S. Park and V. S. Pai, “CoMon: a mostly-scalable monitoring system for Planet-

Lab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1, pp. 65–74, 2006.

[93] D. F. Parkhill, The challenge of the computer utility. Addison-Wesley Reading, MA,

1966.

[94] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, and R. Friedrich, “Smart cool-

ing of data centers,” in Proceedings of the Pacific RIM/ASME International Electronics

Packaging Technical Conference and Exhibition (InterPACK), 2003, pp. 129–137.

[95] F. Petrini, J. Moreira, J. Nieplocha, M. Seager, C. Stunkel, G. Thorson, P. Terry, and

S. Varadarajan, “What are the future trends in highperformance interconnects for

http://opencompute.org/about/energy-efficiency/
http://www.mysql.com/products/cluster/

BIBLIOGRAPHY 215

parallel computers,” in Proceedings of the 12th Annual IEEE Symposium on High Per-

formance Interconnects (HOTI), 2004, pp. 3–3.

[96] Pike Research, “Cloud computing to reduce global data cen-

tre energy expenditures by 38% in 2020,” 2010, (accessed on

21/01/2013). [Online]. Available: http://www.pikeresearch.com/newsroom/

cloud-computing-to-reduce-global-data-center-energy-expenditures-by-38-in-2020

[97] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load balancing and unbal-

ancing for power and performance in cluster-based systems,” in Proceedings of the

Workshop on Compilers and Operating Systems for Low Power (COLP), 2001, pp. 182–

195.

[98] C. G. Plaxton, Y. Sun, M. Tiwari, and H. Vin, “Reconfigurable resource scheduling,”

in Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2006, pp. 93–102.

[99] Rackspace, US Inc., “Rackspace hosting reports second quarter 2012 results,” 2012,

(accessed on 06/11/2012). [Online]. Available: http://ir.rackspace.com/phoenix.

zhtml?c=221673&p=irol-newsArticle&ID=1723357

[100] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No ”power”

struggles: Coordinated multi-level power management for the data center,”

SIGARCH Computer Architecture News, vol. 36, no. 1, pp. 48–59, 2008.

[101] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels: A resource-

centric approach to real-time and multimedia systems,” Readings in multimedia com-

puting and networking, Morgan Kaufmann, pp. 476–490, 2001.

[102] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level power manage-

ment for dense blade servers,” in Proceedings of the 33rd International Symposium on

Computer Architecture (ISCA), 2006, pp. 66–77.

[103] S. Rowe, “Usenet archives,” 1992, (accessed on 16/01/2013). [Online]. Available:

https://groups.google.com/d/msg/comp.misc/XE25RmO1gIo/-ScxdONYkfkJ

http://www.pikeresearch.com/newsroom/cloud-computing-to-reduce-global-data-center-energy-expenditures-by-38-in-2020
http://www.pikeresearch.com/newsroom/cloud-computing-to-reduce-global-data-center-energy-expenditures-by-38-in-2020
http://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=1723357
http://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=1723357
https://groups.google.com/d/msg/comp.misc/XE25RmO1gIo/-ScxdONYkfkJ

216 BIBLIOGRAPHY

[104] D. G. Sachs, W. Yuan, C. J. Hughes, A. Harris, S. V. Adve, D. L. Jones, R. H. Kravets,

and K. Nahrstedt, “GRACE: A hierarchical adaptation framework for saving en-

ergy,” Computer Science, University of Illinois, Tech. Rep. UIUCDCS-R-2004-2409,

2004.

[105] B. Song, C. Ernemann, and R. Yahyapour, “Parallel computer workload modeling

with Markov chains,” in Proceedings of the 11th International Workshop on Job Schedul-

ing Strategies for Parallel Processing (JSSPP 2005), 2005, pp. 47–62.

[106] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-tiered on-demand resource

scheduling for VM-based data center,” in Proceedings of the 9th IEEE/ACM Interna-

tional Symposium on Cluster Computing and the Grid (CCGrid 2009), Shanghai, China,

2009, pp. 148–155.

[107] B. Speitkamp and M. Bichler, “A mathematical programming approach for server

consolidation problems in virtualized data centers,” IEEE Transactions on Services

Computing (TSC), vol. 3, no. 4, pp. 266–278, 2010.

[108] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for Cloud com-

puting,” in Proceedings of the 2008 USENIX Workshop on Power Aware Computing and

Systems (HotPower), 2008, pp. 1–5.

[109] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive system

shutdown and other architectural techniques for energy efficient programmable

computation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 4, no. 1, pp. 42–55, 1996.

[110] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource allocation

using virtual clusters,” in Proceedings of the 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid, 2009, pp. 260–267.

[111] J. Stoess, C. Klee, S. Domthera, and F. Bellosa, “Transparent, power-aware migra-

tion in virtualized systems,” in Proceedings of GI/ITG Fachgruppentreffen Betriebssys-

teme, 2007, pp. 1–6.

BIBLIOGRAPHY 217

[112] J. Stoess, C. Lang, and F. Bellosa, “Energy management for hypervisor-based vir-

tual machines,” in Proceedings of the USENIX Annual Technical Conference on Proceed-

ings of the USENIX Annual Technical Conference, 2007, pp. 1–14.

[113] C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving power in the control path of em-

bedded processors,” IEEE Design & Test of Computers, vol. 11, no. 4, pp. 24–31, 1994.

[114] V. Tiwari, P. Ashar, and S. Malik, “Technology mapping for low power,” in Proceed-

ings of the 30nd Annual ACM/IEEE Design Automation Conference (DAC), 1993, pp.

74–79.

[115] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low energy: An

overview,” in Proceedings of the IEEE Symposium on Low Power Electronics, 1994, pp.

38–39.

[116] V. Vardhan, D. G. Sachs, W. Yuan, A. F. Harris, S. V. Adve, D. L. Jones, R. H.

Kravets, and K. Nahrstedt, “Integrating fine-grained application adaptation with

global adaptation for saving energy,” in Proceedings of the International Workshop on

Power-Aware Real-Time Computing, Jersey City, NJ, 2005, pp. 1–14.

[117] V. Venkatachalam and M. Franz, “Power reduction techniques for microprocessor

systems,” ACM Computing Surveys (CSUR), vol. 37, no. 3, pp. 195–237, 2005.

[118] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server workload analy-

sis for power minimization using consolidation,” in Proceedings of the 2009 USENIX

Annual Technical Conference, 2009, pp. 28–28.

[119] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and migration cost

aware application placement in virtualized systems,” in Proceedings of the 9th

ACM/IFIP/USENIX International Conference on Middleware, 2008, pp. 243–264.

[120] VMware Inc., “vSphere resource management guide,” Tech. Rep., 2009.

[121] ——, “VMware distributed power management concepts and use,” Tech. Rep.,

2010.

218 BIBLIOGRAPHY

[122] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine live

migration in Clouds: A performance evaluation,” in Proceedings of the 1st Interna-

tional Conference on Cloud Computing (CloudCom), 2009, pp. 1–12.

[123] X. Wang and Y. Wang, “Coordinating power control and performance management

for virtualized server clusters,” IEEE Transactions on Parallel and Distributed Systems

(TPDS), vol. 22, no. 2, pp. 245–259, 2011.

[124] G. Wei, J. Liu, J. Xu, G. Lu, K. Yu, and K. Tian, “The on-going evolutions of power

management in Xen,” Intel Corporation, Tech. Rep., 2009.

[125] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced CPU

energy,” Mobile Computing, pp. 449–471, 1996.

[126] A. Weissel and F. Bellosa, “Process cruise control: event-driven clock scaling for

dynamic power management,” in Proceedings of the International Conference on Com-

pilers, Architecture, and Synthesis for Embedded Systems, 2002, pp. 238–246.

[127] C. Weng, M. Li, Z. Wang, and X. Lu, “Automatic performance tuning for the vir-

tualized cluster system,” in Proceedings of the 29th International Conference on Dis-

tributed Computing Systems (ICDCS), 2009, pp. 183–190.

[128] A. Wierman, L. L. Andrew, and A. Tang, “Power-aware speed scaling in processor

sharing systems,” in Proceedings of the 28th Conference on Computer Communications

(INFOCOM), 2009, pp. 2007–2015.

[129] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and gray-box

strategies for virtual machine migration,” in Proceedings of the 4th USENIX Sympo-

sium on Networked Systems Design & Implementation, 2007, pp. 229–242.

[130] M. Yue, “A simple proof of the inequality FFD (L)< 11/9 OPT (L)+ 1,for all l for

the FFD bin-packing algorithm,” Acta Mathematicae Applicatae Sinica (English Series),

vol. 7, no. 4, pp. 321–331, 1991.

[131] H. Zeng, C. S. Ellis, and A. R. Lebeck, “Experiences in managing energy with

ecosystem,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 62–68, 2005.

BIBLIOGRAPHY 219

[132] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “ECOSystem: Managing energy

as a first class operating system resource,” ACM SIGPLAN Notices, vol. 37, no. 10,

pp. 123–132, 2002.

[133] Q. Zheng and B. Veeravalli, “Utilization-based pricing for power management and

profit optimization in data centers,” Journal of Parallel and Distributed Computing

(JPDC), vol. 72, no. 1, pp. 27–34, 2011.

[134] W. Zheng, R. Bianchini, G. Janakiraman, J. Santos, and Y. Turner, “JustRunIt:

Experiment-based management of virtualized data centers,” in Proceedings of the

2009 USENIX Annual Technical Conference, 2009, pp. 18–33.

[135] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser

et al., “1000 Islands: Integrated capacity and workload management for the next

generation data center,” in Proceedings of the 5th International Conference on Auto-

nomic Computing (ICAC), 2008, pp. 172–181.

	1 Introduction
	1.1 Energy-Efficient Dynamic Consolidation of Virtual Machines
	1.2 Research Problems and Objectives
	1.3 Methodology
	1.4 Contributions
	1.5 Thesis Organization

	2 A Taxonomy and Survey of Energy-Efficient Computing Systems
	2.1 Introduction
	2.2 Power and Energy Models
	2.2.1 Static and Dynamic Power Consumption
	2.2.2 Sources of Power Consumption
	2.2.3 Modeling Power Consumption

	2.3 Problems of High Power and Energy Consumption
	2.3.1 High Power Consumption
	2.3.2 High Energy Consumption

	2.4 The State of the Art in Energy-Efficient Computing Systems
	2.4.1 Hardware and Firmware Level
	2.4.2 Operating System Level
	2.4.3 Virtualization Level
	2.4.4 Data Center Level

	2.5 Thesis Scope and Positioning
	2.6 Conclusions

	3 Competitive Analysis of Online Algorithms for Dynamic VM Consolidation
	3.1 Introduction
	3.2 Background on Competitive Analysis
	3.3 The Single VM Migration Problem
	3.3.1 The Cost Function
	3.3.2 The Cost of an Optimal Offline Algorithm
	3.3.3 An Optimal Online Deterministic Algorithm

	3.4 The Dynamic VM Consolidation Problem
	3.4.1 An Optimal Online Deterministic Algorithm

	3.5 Conclusions

	4 Heuristics for Distributed Dynamic VM Consolidation
	4.1 Introduction
	4.2 The System Model
	4.2.1 Multi-Core CPU Architectures
	4.2.2 The Power Model
	4.2.3 The Cost of VM Live Migration
	4.2.4 SLA Violation Metrics

	4.3 Heuristics for Distributed Dynamic VM Consolidation
	4.3.1 Host Underload Detection
	4.3.2 Host Overload Detection
	4.3.3 VM Selection
	4.3.4 VM Placement

	4.4 Performance Evaluation
	4.4.1 Experiment Setup
	4.4.2 Performance Metrics
	4.4.3 Workload Data
	4.4.4 Simulation Results and Analysis

	4.5 Conclusions

	5 The Markov Host Overload Detection Algorithm
	5.1 Introduction
	5.2 Related Work
	5.3 The Objective of a Host Overload Detection Algorithm
	5.4 A Workload Independent QoS Metric
	5.5 An Optimal Offline Algorithm
	5.6 A Markov Chain Model for Host Overload Detection
	5.6.1 Background on Markov Chain
	5.6.2 The Host Model
	5.6.3 The QoS Constraint
	5.6.4 The Optimization Problem
	5.6.5 Modeling Assumptions

	5.7 Non-Stationary Workloads
	5.7.1 Multisize Sliding Window Workload Estimation

	5.8 The Control Algorithm
	5.9 The CPU model
	5.10 Performance Evaluation
	5.10.1 Importance of Precise Workload Estimation
	5.10.2 Evaluation Using PlanetLab Workload Traces

	5.11 Conclusions

	6 OpenStack Neat: A Framework for Distributed Dynamic VM Consolidation
	6.1 Introduction
	6.2 Related Work
	6.3 System Design
	6.3.1 Requirements and Assumptions
	6.3.2 Integration with OpenStack
	6.3.3 System Components
	6.3.4 The Global Manager
	6.3.5 The Local Manager
	6.3.6 The Data Collector
	6.3.7 Data Stores
	6.3.8 Configuration
	6.3.9 Extensibility of the Framework
	6.3.10 Deployment

	6.4 VM Consolidation Algorithms
	6.4.1 Host Underload Detection
	6.4.2 Host Overload Detection
	6.4.3 VM Selection
	6.4.4 VM Placement

	6.5 Implementation
	6.6 A Benchmark Suite
	6.6.1 Workload Traces
	6.6.2 Performance Metrics
	6.6.3 Performance Evaluation Methodology

	6.7 Performance Evaluation
	6.7.1 Experimental Testbed
	6.7.2 Experimental Setup and Algorithm Parameters
	6.7.3 Experimental Results and Analysis
	6.7.4 Scalability Remarks

	6.8 Conclusions

	7 Conclusions and Future Directions
	7.1 Conclusions and Discussion
	7.2 Future Research Directions
	7.2.1 Advanced Distributed VM Placement Algorithms
	7.2.2 VM Network Topologies
	7.2.3 Exploiting VM Resource Usage Patterns
	7.2.4 Thermal-Aware Dynamic VM Consolidation
	7.2.5 Dynamic and Heterogeneous SLAs
	7.2.6 Power Capping
	7.2.7 Competitive Analysis of Dynamic VM Consolidation Algorithms
	7.2.8 Replicated Global Managers

	7.3 Final Remarks

